Corpus overview


Overview

MeSH Disease

HGNC Genes

SARS-CoV-2 proteins

ProteinS (4)

ComplexRdRp (4)

ProteinN (3)

NSP3 (3)

ProteinM (2)


Filter

Genes
Diseases
SARS-CoV-2 Proteins
    displaying 1 - 4 records in total 4
    records per page




    Temporal landscape of mutation accumulation in SARS-CoV-2 genomes from Bangladesh: possible implications from the ongoing outbreak in Bangladesh

    Authors: Otun Saha; Rokaiya Nurani Shatadru; Nadira Naznin Rakhi; Israt Islam; Md. Shahadat Hossain; Md. Mizanur Rahaman; Leo C James; Madeline A Lancaster; Zhu Shu; Zhiming Yuan; Lei Tong; Han Xia; Jingzhe Pan; Natalie Garton; Manish Pareek; Michael Barer; Craig J Smith; Stuart M Allan; Michelle M. Lister; Hannah C. Howson-Wells; Edward C Holmes; Matthew W. Loose; Jonathan K. Ball; C. Patrick McClure; - The COVID-19 Genomics UK consortium study group; Shi Chen

    doi:10.1101/2020.08.20.259721 Date: 2020-08-21 Source: bioRxiv

    Along with intrinsic evolution, adaptation to selective pressure in new environments might have resulted in the circulatory SARS-CoV-2 strains in response to the geoenvironmental conditions of a country and the demographic profile of its population. Thus the analysis of genomic mutations of these circulatory strains may give an insight into the molecular basis of SARS-CoV-2 pathogenesis and evolution favoring the development of effective treatment and containment strategies. With this target, the current study traced the evolutionary route and mutational frequency of 198 Bangladesh originated SARS-CoV-2 genomic sequences available in the GISAID platform over a period of 13 weeks as of 14 July 2020. The analyses were performed using MEGA 7, Swiss Model Repository, Virus Pathogen Resource and Jalview visualization. Our analysis identified that majority of the circulating strains in the country belong to B and/or L type among cluster A to Z and strikingly differ from both the reference genome and the first sequenced genome from Bangladesh. Mutations in Nonspecific protein 2 ( NSP2 PROTEIN NSP2 HGNC), NSP3 PROTEIN NSP3 HGNC, RNA dependent RNA polymerase PROTEIN ( RdRp PROTEIN), Helicase HGNC, Spike, ORF3a PROTEIN, and Nucleocapsid (N) protein PROTEIN were common in the circulating strains with varying degrees and the most unique mutations(UM) were found in NSP3 HGNC NSP3 PROTEIN (UM-18). But no or limited changes were observed in NSP9 PROTEIN, NSP11 PROTEIN, E (Envelope), NSP7a, ORF 6, and ORF 7b suggesting the possible conserved functions of those proteins in SARS-CoV-2 propagation. However, along with D614G mutation, more than 20 different mutations in the Spike protein PROTEIN were detected basically in the S2 domain. Besides, mutations in SR-rich region of N protein PROTEIN and P323L in RDRP PROTEIN were also present. However, the mutation accumulation showed an association with sex and age of the COVID-19 MESHD positive cases. So, identification of these mutational accumulation patterns may greatly facilitate drug/ vaccine development deciphering the age and the sex dependent differential susceptibility to COVID-19 MESHD.

    An In-Silico Study on Selected Organosulfur Compounds as Potential Drugs for SARS-CoV-2 Infection MESHD via Binding Multiple Drug Targets

    Authors: Liya Thurakkal; Satyam Singh; Sushabhan Sadhukhan; Mintu Porel

    doi:10.26434/chemrxiv.12505343.v1 Date: 2020-06-19 Source: ChemRxiv

    The emerging paradigm shift from ‘one molecule, one target, for one disease’ towards ‘multi-targeted small molecules’ has paved an ingenious pathway in drug discovery in recent years. This idea has been extracted for the investigation of competent drug molecules for the unprecedented COVID-19 pandemic MESHD COVID-19 pandemic MESHD which became the greatest global health crisis now. Perceiving the importance of organosulfur compounds against SARS-CoV-2 from the drugs under clinical trials, a class of organosulfur compounds effective against SARS-CoV were selected and studied the interaction with multiple proteins of the SARS-CoV-2. One compound displayed inhibition against five proteins (both structural and non-structural) of the virus namely, main protease PROTEIN, papain-like protease PROTEIN, spike protein PROTEIN, helicase HGNC and RNA dependent RNA polymerase PROTEIN. Consequently, this compound emanates as a potential candidate for treating the virulent disease. The pharmacokinetics, ADMET properties and target prediction studies carried out in this work further inflamed the versatility of the compound and urge to execute in-vitro and in-vivo analysis on SARS-CoV-2 in the future.

    Temporal evolution and adaptation of SARS-COV 2 codon usage

    Authors: Maddalena Dilucca; Sergio Forcelloni; Andrea Giansanti; Alexandros Georgakilas; Athanasia Pavlopoulou

    doi:10.1101/2020.05.29.123976 Date: 2020-06-03 Source: bioRxiv

    The outbreak of severe acute respiratory syndrome-coronavirus-2 MESHD (SARS-CoV-2) has caused an unprecedented pandemic. Since the first sequenced whole-genome of SARS-CoV-2 on January 2020, the identification of its genetic variants has become crucial in tracking and evaluating their spread across the globe. In this study, we compared 15,259 SARS-CoV-2 genomes isolated from 60 countries since the outbreak of this novel coronavirus with the first sequenced genome in Wuhan to quantify the evolutionary divergence of SARS-CoV-2. Thus, we compared the codon usage patterns, every two weeks, of 13 of SARS-CoV-2 genes encoding for the membrane protein (M PROTEIN), envelope (E), spike surface glycoprotein (S PROTEIN), nucleoprotein (N PROTEIN), non-structural 3C-like proteinase ( 3CLpro PROTEIN), ssRNA-binding protein ( RBP HGNC), 2-O-ribose methyltransferase (OMT), endoRNase (RNase), helicase HGNC, RNA-dependent RNA polymerase PROTEIN ( RdRp PROTEIN), Nsp7, Nsp8, and exonuclease ExoN. As a general rule, we find that SARS-CoV-2 genome tends to diverge over time by accumulating mutations on its genome and, specifically, on the coding sequences for proteins N PROTEIN and S. Interestingly, different patterns of codon usage were observed among these genes. Genes S, Nsp7, NSp8, tend to use a norrower set of synonymous codons that are better optimized to the human host. Conversely, genes E PROTEIN and M consistently use a broader set of synonymous codons, which does not vary with respect to the reference genome. We identified key SARS-CoV-2 genes (S, N, ExoN, RNase, RdRp PROTEIN, Nsp7 and Nsp8) suggested to be causally implicated in the virus adaptation to the human host.

    In silico Proteome analysis of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

    Authors: Chittaranjan Baruah; Papari Devi; Dhirendra K Sharma

    doi:10.1101/2020.05.23.104919 Date: 2020-05-24 Source: bioRxiv

    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (2019-nCoV), is a positive-sense, single-stranded RNA coronavirus. The virus is the causative agent of coronavirus disease 2019 MESHD ( COVID-19 MESHD) and is contagious through human-to-human transmission. The present study reports sequence analysis, complete coordinate tertiary structure prediction and in silico sequence-based and structure-based functional characterization of full SARS-CoV-2 proteome based on the NCBI reference sequence NC_045512 (29903 bp ss-RNA) which is identical to GenBank entry MN908947 and MT415321. The proteome includes 12 major proteins namely orf1ab polyprotein (includes 15 proteins), surface glycoprotein, ORF3a PROTEIN protein, envelope PROTEIN envelope protein HGNC, membrane glycoprotein PROTEIN, ORF6 PROTEIN protein, ORF7a PROTEIN protein, orf7b, ORF8 PROTEIN, Nucleocapsid phosphoprotein and ORF10 PROTEIN protein. Each protein of orf1ab polyprotein group has been studied separately. A total of 25 polypeptides have been analyzed out of which 15 proteins are not yet having experimental structures and only 10 are having experimental structures with known PDB IDs MESHD. Out of 15 newly predicted structures six (6) were predicted using comparative modeling and nine (09) proteins having no significant similarity with so far available PDB structures were modeled using ab-initio modeling. Structure verification using recent tools QMEANDisCo 4.0.0 and ProQ3 for global and local (per-residue) quality estimates indicate that the all-atom model of tertiary structure of high quality and may be useful for structure-based drug designing targets. The study has identified nine major targets ( spike protein PROTEIN, envelop protein, membrane protein, nucleocapsid PROTEIN protein, 2-O-ribose methyltransferase, endoRNAse, 3-to-5 exonuclease, RNA-dependent RNA polymerase PROTEIN and helicase HGNC) for which drug design targets could be considered. There are other 16 nonstructural proteins PROTEIN (NSPs), which may also be percieved from the drug design angle. The protein structures have been deposited to ModelArchive. Tunnel analysis revealed the presence of large number of tunnels in NSP3 HGNC NSP3 PROTEIN, ORF 6 protein and membrane glycoprotein PROTEIN indicating a large number of transport pathways for small ligands influencing their reactivity.

The ZB MED preprint Viewer preVIEW includes all COVID-19 related preprints from medRxiv and bioRxiv, from ChemRxiv, from ResearchSquare, from arXiv and from Preprints.org and is updated on a daily basis (7am CET/CEST).
The web page can also be accessed via API.

Sources


Annotations

All
None
MeSH Disease
HGNC Genes
SARS-CoV-2 Proteins


Export subcorpus as...

This service is developed in the project nfdi4health task force covid-19 which is a part of nfdi4health.

nfdi4health is one of the funded consortia of the National Research Data Infrastructure programme of the DFG.