Corpus overview


Overview

MeSH Disease

Human Phenotype

Falls (1)


Transmission

Seroprevalence
    displaying 1 - 1 records in total 1
    records per page




    Reopening universities during the COVID-19 pandemic: A testing strategy to minimize active cases and delay outbreaks

    Authors: Lior Rennert; Corey Andrew Kalbaugh; Lu Shi; Christopher McMahan

    doi:10.1101/2020.07.06.20147272 Date: 2020-07-07 Source: medRxiv

    Background: University campuses present an ideal environment for viral spread and are therefore at extreme risk of serving as a hotbed for a COVID-19 outbreak. While active surveillance throughout the semester such as widespread testing, contact tracing TRANS, and case isolation, may assist in detecting and preventing early outbreaks, these strategies will not be sufficient should a larger outbreak occur. It is therefore necessary to limit the initial number of active cases at the start of the semester. We examine the impact of pre-semester NAT testing on disease spread TRANS in a university setting. Methods: We implement simple dynamic transmission TRANS models of SARS-CoV-2 infection MESHD to explore the effects of pre-semester testing strategies on the number of active infections MESHD and occupied isolation beds throughout the semester. We assume an infectious period TRANS of 3 days and vary R0 TRANS to represent the effectiveness of disease mitigation strategies throughout the semester. We assume the prevalence SERO of active cases at the beginning of the semester is 5%. The sensitivity SERO of the NAT test is set at 90%. Results: If no pre-semester screening is mandated, the peak number of active infections occurs in under 10 days and the size of the peak is substantial, ranging from 5,000 active infections when effective mitigation strategies ( R0 TRANS = 1.25) are implemented to over 15,000 active infections for less effective strategies ( R0 TRANS = 3). When one NAT test is mandated within one week of campus arrival, effective ( R0 TRANS = 1.25) and less effective ( R0 TRANS = 3) mitigation strategies delay the onset of the peak to 40 days and 17 days, respectively, and result in peak size ranging from 1,000 to over 15,000 active infections. When two NAT tests are mandated, effective ( R0 TRANS = 1.25) and less effective ( R0 TRANS = 3) mitigation strategies delay the onset of the peak through the end of fall HP semester and 20 days, respectively, and result in peak size ranging from less than 1,000 to over 15,000 active infections. If maximum occupancy of isolation beds is set to 2% of the student population, then isolation beds would only be available for a range of 1 in 2 confirmed cases TRANS ( R0 TRANS = 1.25) to 1 in 40 confirmed cases TRANS ( R0 TRANS = 3) before maximum occupancy is reached. Conclusion: Even with highly effective mitigation strategies throughout the semester, inadequate pre-semester testing will lead to early and large surges of the disease and result in universities quickly reaching their isolation bed capacity. We therefore recommend NAT testing within one week of campus return. While this strategy is sufficient for delaying the timing of the outbreak, pre-semester testing would need to be implemented in conjunction with effective mitigation strategies to reduce the outbreak size.

The ZB MED preprint Viewer preVIEW includes all COVID-19 related preprints from medRxiv and bioRxiv, from ChemRxiv, from ResearchSquare, from arXiv and from Preprints.org and is updated on a daily basis (7am CET/CEST).
The web page can also be accessed via API.

Sources


Annotations

All
None
MeSH Disease
Human Phenotype
Transmission
Seroprevalence


Export subcorpus as...

This service is developed in the project nfdi4health task force covid-19 which is a part of nfdi4health.

nfdi4health is one of the funded consortia of the National Research Data Infrastructure programme of the DFG.