displaying 1 - 10 records in total 30
    records per page




    Dual targeting of cytokine storm and viral replication in COVID-19 MESHD by plant-derived steroidal pregnanes in silico

    Authors: Gideon A. Gyebi; Oludare M. Ogunyemi; Ibrahim M. Ibrahim; Saheed O. Afolabi; Joseph O. Adebayo

    doi:10.21203/rs.3.rs-329239/v1 Date: 2021-03-14 Source: ResearchSquare

    The high morbidity and mortality rate of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) infection MESHD arises majorly from the Acute Respiratory Distress Syndrome MESHD and “cytokine storm” syndrome, which is sustained by an aberrant systemic inflammatory response and elevated pro-inflammatory cytokines. Thus, phytocompounds with broad-spectrum anti-inflammatory activity that target multiple SARS-CoV-2 proteins will enhance the development of effective drugs against the disease. In this study, an in-house library of 106 steriodal plant-derived pregnanes (PDPs) was docked in the active regions of human glucocorticoid receptors (hGRs) in a comparative molecular docking analysis. Based on the minimal binding energy and a comparative dexamethason binding mode analysis, a list of top twenty ranked PDPs docked in the agonist conformation of hGR, with binding energies ranging between -9.8 and -11.2 Kcal/mol, was obtained and analyzed for interactions with the human Janus kinases 1 and Interleukins-6 and SARS-CoV-2 3-chymotrypsin- like protease, Papain PROTEIN-like protease and RNA-dependent RNA polymerase PROTEIN. For each target protein, the top three ranked PDPs were selected. Eight PDPs (bregenin, hirundigenin, anhydroholantogenin, atratogenin A, atratogenin B, glaucogenin A, glaucogenin C and glaucogenin MESHD D) with high binding tendencies to the catalytic residues of multiple targets were identified. A high degree of structural stability was observed from the 100 ns molecular dynamics simulation analyses of glaucogenin C MESHD and hirundigenin complexes of hGR. The selected top-eight ranked PDPs demonstrated favourable druggable and in silico ADMET properties. Thus, the therapeutic potentials of glaucogenin C MESHD and hirundigenin can be explored for further in vitro and in vivo studies.

    Repurposing Multi-Targeting Plant Natural Product Scaffolds In Silico Against SARS-CoV- 2 Non-Structural Proteins PROTEIN Implicated in Viral Pathogenesis

    Authors: Von Novi de Leon; Joe Anthony Manzano; Delfin Yñigo H. Pilapil; Rey Arturo T. Fernandez; James Kyle Ching; Mark Tristan J. Quimque; Kin Israel Notarte; Allan Patrick Macabeo

    doi:10.26434/chemrxiv.14125433.v1 Date: 2021-03-01 Source: ChemRxiv

    Background: Accessing COVID-19 MESHD vaccines is a challenge despite successful clinical trials. This burdens the COVID-19 MESHD treatment gap, thereby requiring accelerated discovery of anti-SARS-CoV-2 agents. Thus, this study explored the potential of anti-HIV reverse transcriptase (RT) phytochemicals as inhibitors of SARS-CoV- 2 non-structural proteins PROTEIN (nsps) by targeting in silico key sites in the structures of SARS-CoV-2 nsps. Moreover, structures of the anti-HIV compounds were considered for druggability and toxicity MESHD. 104 anti-HIV phytochemicals were subjected to molecular docking with papain-like protease PROTEIN ( nsp3 HGNC), 3-chymotrypsin-like protease ( nsp5 HGNC), RNA-dependent RNA polymerase PROTEIN (nsp12), helicase HGNC (nsp13), SAM-dependent 2’-O-methyltransferase (nsp16) and its cofactor (nsp10), and endoribonuclease (nsp15). Drug-likeness MESHD and ADME (absorption, distribution, metabolism, and excretion) properties of the top ten compounds per nsp were predicted using SwissADME. Their toxicity MESHD was also determined using OSIRIS Property Explorer. Results: Among the twenty-seven top-scoring compounds, the polyphenolic natural products amentoflavone (1), robustaflavone (4), punicalin (9), volkensiflavone (11), rhusflavanone (13), morelloflavone (14), hinokiflavone (15), and michellamine B (19) were multi-targeting and had the strongest affinities to at least two of the nsps (Binding Energy = -7.7 to -10.8 kcal/mol). Friedelin (2), pomolic acid (5), ursolic acid (10), garcisaterpenes A (12), hinokiflavone (15), and digitoxigenin-3-O-glucoside (17) were computationally druggable. Moreover, compounds 5 and 17 showed good gastrointestinal absorptive property. Most of the compounds were also predicted to be non-toxic. Conclusions: Twenty anti-HIV RT phytochemicals showed multi-targeting inhibitory potential against SARS-CoV-2 nsp3 HGNC, 5, 10, 12, 13, 15, and 16, and can therefore be used as prototypes for anti- COVID-19 MESHD drug design.

    Evolving Infection Paradox of SARS-CoV-2: Fitness Costs Virulence?

    Authors: A. S. M. Rubayet Ul Alam; Ovinu Kibria Islam; Md. Shazid Hasan; Mir Raihanul Islam; Shafi Mahmud; Hassan M. AlEmran; Iqbal K Jahid; Keith A. Crandall; M. Anwar Hossain

    doi:10.1101/2021.02.21.21252137 Date: 2021-02-23 Source: medRxiv

    Background: SARS-CoV-2 is continuously spreading worldwide at an unprecedented scale and evolved into seven clades according to GISAID where four (G, GH, GR and GV) are globally prevalent in 2020. These major predominant clades of SARS-CoV-2 are continuously increasing COVID-19 MESHD cases worldwide; however, after an early rise in 2020, the death-case ratio has been decreasing to a plateau. G clade viruses contain four co-occurring mutations in their genome (C241T+C3037T+C14408T: RdRp PROTEIN.P323L+A23403G:spike.D614G). GR, GH, and GV strains are defined by the presence of these four mutations in addition to the clade-featured mutation in GGG28881-28883AAC:N. RG203-204KR, G25563T: ORF3a PROTEIN.Q57H, and C22227T:spike.A222V+C28932T-N.A220V+G29645T, respectively. The research works are broadly focused on the spike protein PROTEIN mutations that have direct roles in receptor binding, antigenicity, thus viral transmission and replication fitness. However, mutations in other proteins might also have effects on viral pathogenicity and transmissibility. How the clade-featured mutations are linked with viral evolution in this pandemic through gearing their fitness MESHD and virulence is the main question of this study. Methodology: We thus proposed a hypothetical model, combining a statistical and structural bioinformatics approach, endeavors to explain this infection paradox by describing the epistatic effects of the clade-featured co-occurring mutations on viral fitness MESHD and virulence. Results and Discussion: The G and GR/GV clade strains represent a significant positive and negative association, respectively, with the death-case ratio (incidence rate ratio or IRR = 1.03, p <0.001 and IRR= 0.99/0.97, p < 0.001), whereas GH clade strains showed no association with the Docking analysis showed the higher infectiousness of a spike mutant through more favorable binding of G614 with the elastase-2 HGNC. RdRp PROTEIN mutation p.P323L significantly increased genome-wide mutations (p<0.0001) since more expandable RdRp PROTEIN (mutant)- NSP8 PROTEIN interaction may accelerate replication. Superior RNA stability and structural variation at NSP3 HGNC NSP3 PROTEIN:C241T might impact upon protein or RNA interactions. Another silent 5'UTR:C241T mutation might affect translational efficiency and viral packaging. These G-featured co-occurring mutations might increase the viral load, alter immune responses in host and hence can modulate intra-host genomic plasticity. An additional viroporin ORF3a PROTEIN:p.Q57H mutation, forming GH-clade, prevents ion permeability by cysteine (C81)-histidine (H57) inter-transmembrane-domain interaction mediated tighter constriction of the channel pore and possibly reduces viral release and immune response. GR strains, four G clade mutations and N:p.RG203-204KR, would have stabilized RNA interaction by more flexible and hypo-phosphorylated SR-rich region. GV strains seemingly gained the evolutionary advantage of superspreading event through confounder factors; nevertheless, N:p.A220V might affect RNA binding. Conclusion: These hypotheses need further retrospective and prospective studies to understand detailed molecular and evolutionary events featuring the fitness MESHD and virulence of SARS-CoV-2.

    DINC-COVID: A webserver for ensemble docking with flexible SARS-CoV-2 proteins MESHD

    Authors: Sarah Hall-Swan; Dinler A Antunes; Didier Devaurs; Mauricio M Rigo; Lydia E Kavraki; Geancarlo Zanatta; Mohit Kumar Divakar; Panyam Suresh; Disha Sharma; Nambi Rajesh; Rahul C Bhoyar; Dasari Ankaiah; Sanaga Shanthi Kumari; Gyan Ranjan; Valluri Anitha Lavanya; Mercy Rophina; S. Umadevi; Paras Sehgal; Avula Renuka Devi; A. Surekha; Pulala Chandra; Rajamadugu Hymavathy; P R Vanaja; Vinod Scaria; Sridhar Sivasubbu; Chloe Simela; Veronica French; Rachel Harris; Sharon A.M. Stevelink; Simon Wessely

    doi:10.1101/2021.01.21.427315 Date: 2021-01-22 Source: bioRxiv

    Motivation: Recent efforts to computationally identify inhibitors for SARS-CoV-2 proteins have largely ignored the issue of receptor flexibility. We have implemented a computational tool for ensemble docking with the SARS-CoV-2 proteins, including the main protease PROTEIN ( Mpro PROTEIN), papain-like protease PROTEIN ( PLpro PROTEIN) and RNA-dependent RNA polymerase PROTEIN ( RdRp PROTEIN). Results: Ensembles of other SARS-CoV-2 proteins are being prepared and made available through a user-friendly docking interface. Plausible binding modes between conformations of a selected ensemble and an uploaded ligand are generated by DINC, our parallelized meta-docking tool. Binding modes are scored with three scoring functions, and account for the flexibility of both the ligand and receptor. Additional details on our methods are provided in the supplementary material. Availability: dinc-covid.kavrakilab.org . Supplementary information: Details on methods for ensemble generation and docking are provided as supplementary data online.

    Unravelling Vitamins as Wonder Molecules for Covid-19 MESHD Management via Structure-based Virtual Screening

    Authors: Medha Pandya; Sejal Shah; Dhanalakshmi Menamadathil; Ayushman Gadnayak; Tanzil Juneja; Amisha Patel; Kajari Das; Jayashankar Das

    doi:10.21203/rs.3.rs-144177/v1 Date: 2021-01-09 Source: ResearchSquare

    The emergence situation of coronavirus disease 2019 MESHD ( COVID-19 MESHD) pandemic has realised the global scientific communities to develop strategies for immediate priorities and long-term approaches for utilization of existing knowledge and resources which can be diverted to pandemic preparedness planning. Lack of proper vaccine candidate and therapeutic management has accelerated the researchers to repurpose the existing drugs with known preclinical and toxicity MESHD profiles, which can easily enter Phase 3 or 4 or can be used directly in clinical settings. We focused to justify even exploration of supplements, nutrients and vitamins to dampen the disease burden of the current pandemic may play a crucial role for its management. We have explored structure based virtual screening of 15 vitamins against non-structural ( NSP3 HGNC NSP3 PROTEIN, NSP5 PROTEIN NSP5 HGNC, ORF7a PROTEIN, NSP12 PROTEIN, ORF3a PROTEIN), structural (Spike & Hemagglutinin esterase) and host protein furin HGNC. The in silico analysis exhibited that vitamin B12, Vitamin B9, Vitamin D3 determined suitable binding while vitamin B15 manifested remarkable H-bond interactions with all targets. Vitamin B12 bestowed the lowest energies with human furin HGNC and SARS-COV-2 RNA dependent RNA polymerase PROTEIN. Furin HGNC mediated cleavage of the viral spike glycoprotein PROTEIN is directly related to enhanced virulence of SARS-CoV-2. In contrast to these, vitamin B12 showed zero affinity with SARS-CoV-2 spike PROTEIN protein. These upshots intimate that Vitamin B12 could be the wonder molecule to shrink the virulence by hindering the furin HGNC mediated entry of spike to host cell. These identified molecules may effectively assist in SARS-CoV-2 therapeutic management to boost the immunity by inhibiting the virus imparting relief in lung inflammation MESHD.

    Computational Analysis of Dynamic Allostery and Control in the three SARS-CoV- 2 non-structural proteins PROTEIN

    Authors: Igors Dubanevics; Charles Heaton; Carlos Riechmann; Tom C B McLeish; Theresa A Ramelot; Thomas B. Acton; Elena Moreno; Thomas Kehrer; Catherine A. Royer; Adolfo Garcia-Sastre; Robert M Krug; Gaetano T. Montelione

    doi:10.1101/2020.12.12.422477 Date: 2020-12-14 Source: bioRxiv

    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the COVID-19 pandemic MESHD, has no vaccine or antiviral drugs available to the public, at the time of writing. The virus non-structural proteins are promising drug targets because of their vital role in the viral cycle. A significant body of work has been focused on finding inhibitors which covalently and competitively bind the active site of the non-structural proteins, but little has been done to address regions other than the active site, i.e. for non-competitive inhibition. Here we extend previous work on the SARS-CoV-2 Mpro PROTEIN ( nsp5 HGNC) to three other SARS-CoV-2 proteins: host shutoff factor PROTEIN ( nsp1 HGNC), papain-like protease PROTEIN ( nsp3 HGNC, also known as PLpro PROTEIN) and RNA-dependent RNA-polymerase PROTEIN (nsp12, also known as RdRp) in complex PROTEIN with nsp7 and nsp8 cofactors. Using open-source software (DDPT) to construct Elastic Network Models (ENM) of the chosen proteins we analyse their fluctuation dynamics and thermodynamics, as well as using this protein family to study convergence and robustness of the ENM. Exhaustive 2-point mutational scans of the ENM and their effect on fluctuation free energies suggest several new candidate regions, distant from the active site, for control of the proteins function, which may assist the drug development based on the current small molecule binding screens. The results also provide new insights, including non-additive effects of double-mutation or inhibition, into the active biophysical research field of protein fluctuation allostery and its underpinning dynamical structure.

    Approach Towards Drugs Repurposing: Docking Studies with Multiple Target Proteins Associated with SARS-CoV-2

    Authors: Shiwani Rana; Meghali Panwar; Kalyan Sundar Ghosh

    doi:10.26434/chemrxiv.12469172.v2 Date: 2020-11-09 Source: ChemRxiv

    The current pandemic outbreak of COVID-19 MESHD due to viral infections MESHD by SARS-CoV-2 is now become associated with severe commotion on global healthcare and economy. In this extreme situation when vaccine or drugs against COVID-19 MESHD are not available, the only quick and feasible therapeutic alternative would be the drug repurposing approach. In the present work, in silico screening of some antiviral and antiprotozoal drugs using Autodock docking tool was performed. Two known antiviral drugs sorivudine and noricumazole B are predicted to bind to the active site of the viral proteases namely cysteine like protease PROTEIN or 3CL protease PROTEIN ( 3CLpro PROTEIN) and papain like protease PROTEIN ( PLpro PROTEIN) respectively with a highly favorable free energy of binding. Further, the promising molecules were subjected for checking their activity on other molecular targets like spike protein S1 PROTEIN, RNA dependent RNA polymerase PROTEIN ( RdRp PROTEIN) and angiotensin converting enzyme 2 HGNC ( ACE2 HGNC) receptor. But the compounds were found not effective on rest other molecular targets.

    Drug Design and Repurposing with DockThor-VS Web Server: Virtual Screening focusing on SARS-CoV-2 Therapeutic Targets and their Non-Synonym Variants

    Authors: Isabella A. Guedes; Leon S. C. Costa; Karina B. dos Santos; Ana L. M. Karl; Gregório K. Rocha; Iury M. Teixeira; Marcelo M. Galheigo; Vivian Medeiros; Eduardo Krempser; Fábio L. Custódio; Helio J. C. Barbosa; Marisa F. Nicolás; Laurent E. Dardenne

    doi:10.21203/rs.3.rs-96789/v1 Date: 2020-10-22 Source: ResearchSquare

    The COVID-19 MESHD caused by the SARS-CoV-2 virus was declared as a pandemic disease in March 2020 by the World Health Organization (WHO). Structure-Based Drug Design strategies based on docking methodologies have been widely used for both new drug development and drug repurposing to find effective treatments against this disease. In this work, we present the developments implemented in the DockThor-VS web server to provide a virtual screening (VS) platform with curated structures of potential therapeutic targets from SARS-CoV-2 incorporating genetic information regarding relevant non-synonymous variations. The web server facilitates repurposing VS experiments providing curated libraries of currently available drugs on the market. Currently, DockThor-VS provides ready-for-docking 3D structures for wild type and selected mutations for Nsp3 HGNC (papain-like, PLpro PROTEIN domain), Nsp5 HGNC ( Mpro PROTEIN, 3CLpro PROTEIN), Nsp12 ( RdRp PROTEIN), Nsp15 (NendoU), N protein PROTEIN and Spike. We performed VS experiments of FDA-approved drugs considering the therapeutic targets available at the web server to assess the impact of considering different structures and mutations in the identification of possible new treatments of SARS-CoV-2 infections MESHD. The DockThor-VS is freely available at www.dockthor.lncc.br.

    Ivermectin as a promising RNA-dependent RNA polymerase PROTEIN inhibitor and a therapeutic drug against SARS-CoV2: Evidence from in silico studies

    Authors: Ananta Swargiary

    doi:10.21203/rs.3.rs-73308/v1 Date: 2020-09-07 Source: ResearchSquare

    Purpose: COVID-19 MESHD, caused by SARS-CoV2 virus is a contagious disease affecting millions of lives throughout the globe. Currently, there are no clinically approved drugs for SARS-CoV2 although some drugs are undergoing clinical trials. The present study investigates the binding property of ivermectin on four important drug targets, spike protein PROTEIN, RNA-dependent RNA polymerase PROTEIN, 3-chymotrypsin- and papain-like proteases PROTEIN of SARS-CoV2. Methods: The 3D structure of ivermectin along with known antiviral drug lopinavir, simeprevir and four nucleotides ATP, GTP, CTP, and UTP were downloaded from PubChem database. Crystal structures of proteins were downloaded from PDB database. PDB files were converted into pdbqt file using AutoDock tools. After proper processing and grid formation, docking was carried out in AutoDock vina. Furthermore, the co-crystallized RNA and its binding interactions with RdRp PROTEIN were studied using various visualization tools including Discovery studio.Results: Docking study showed that ivermectin is the best binding drug compared to lopinavir and simeprevir. The best binding interaction was found to be -9.7kcal/mol with RdRp PROTEIN suggesting potential inhibitor of the protein. Twenty-one amino acid residues of RdRp PROTEIN were found to interact with ivermectin including the catalytic residue Asp760. Furthermore, RNA- RdRp complex PROTEIN revealed that the catalytic active residues Ser759 and Asp760 of RdRp PROTEIN formed strong interactions with RNA chain. Binding of ivermectin in the active site of RdRp PROTEIN make clash with the nucleotides of RNA chain suggesting the possible inhibition of replication.Conclusions: The present study suggests ivermectin as a potential inhibitor of RdRp PROTEIN which may be crucial to combat the SARS-CoV2.

    Computational evidence on repurposing the anti-influenza drugs baloxavir acid and baloxavir marboxil against COVID-19 MESHD

    Authors: Suban K Sahoo; Seshu Vardhan

    id:2009.01094v1 Date: 2020-09-02 Source: arXiv

    The main reasons for the ongoing COVID-19 MESHD ( coronavirus disease 2019 MESHD) pandemic are the unavailability of recommended efficacious drugs or vaccines along with the human to human transmission nature of SARS-CoV-2 virus. So, there is urgent need to search appropriate therapeutic approach by repurposing approved drugs. In this communication, molecular docking analyses of two influenza antiviral drugs baloxavir acid (BXA) and baloxavir marboxil (BXM) were performed with the three therapeutic target proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), i.e., main protease PROTEIN ( Mpro PROTEIN), papain-like protease PROTEIN ( PLpro PROTEIN) and RNA-dependent RNA polymerase PROTEIN ( RdRp PROTEIN). The molecular docking results of both the drugs BXA and BXM were analysed and compared. The investigational drug BXA binds at the active site of Mpro PROTEIN and RdRp PROTEIN, whereas the approved drug BXM binds only at the active site of RdRp PROTEIN. Also, comparison of dock score revealed that BXA is binding more effectively at the active site of RdRp PROTEIN than BXM. The computational molecular docking revealed that the drug BXA may be more effective against COVID-19 MESHD as compared to BXM.

The ZB MED preprint Viewer preVIEW includes all COVID-19 related preprints from medRxiv and bioRxiv, from ChemRxiv, from ResearchSquare, from arXiv and from Preprints.org and is updated on a daily basis (7am CET/CEST).
The web page can also be accessed via API.

Sources


Annotations

All
None
MeSH Disease
HGNC Genes
SARS-CoV-2 Proteins


Export subcorpus as...

This service is developed in the project nfdi4health task force covid-19 which is a part of nfdi4health.

nfdi4health is one of the funded consortia of the National Research Data Infrastructure programme of the DFG.