Corpus overview


MeSH Disease

HGNC Genes

SARS-CoV-2 proteins

ProteinS (52)

ComplexRdRp (52)

NSP5 (18)

NSP3 (15)

ORF3a (8)


SARS-CoV-2 Proteins
    displaying 1 - 10 records in total 52
    records per page

    Analysis of SARS-CoV-2 Mutations Over Time Reveals Increasing Prevalence of Variants in the Spike Protein PROTEIN and RNA-Dependent RNA Polymerase PROTEIN

    Authors: William M Showers; Sonia M Leach; Katerina Kechris; Michael Strong

    doi:10.1101/2021.03.05.433666 Date: 2021-03-05 Source: bioRxiv

    Amid the ongoing COVID-19 pandemic MESHD, it has become increasingly important to monitor the mutations that arise in the SARS-CoV-2 virus, to prepare public health strategies and guide the further development of vaccines and therapeutics. The spike (S) protein PROTEIN and the proteins comprising the RNA-Dependent RNA Polymerase PROTEIN ( RdRP PROTEIN) are key vaccine and drug targets, respectively, making mutation surveillance of these proteins of great importance. Full protein sequences for the spike proteins PROTEIN and RNA-dependent RNA polymerase PROTEIN proteins were downloaded from the GISAID database, aligned, and the variants identified. Polymorphisms in the protein sequence were investigated at the protein structural level and examined longitudinally in order to identify sequence and strain variants that are emerging over time. Our analysis revealed a group of variants in the spike protein PROTEIN and the polymerase complex that appeared in August, and account for around five percent of the genomes analyzed up to the last week of October. A structural analysis also facilitated investigation of several unique variants in the receptor binding domain and the N-terminal domain of the spike protein PROTEIN, with high-frequency mutations occurring more commonly in these regions. The identification of new variants emphasizes the need for further study on the effects of these mutations and the implications of their increased prevalence, particularly as these mutations may impact vaccine or therapeutic efficacy.

    Atorvastatin effectively inhibits late replicative cycle steps of SARS-CoV-2 in vitro

    Authors: Maria Isabel Zapata-Cardona; Lizdany Flórez-Álvarez; Wildeman Zapata-Builes; Ariadna Guerra-Sandoval; Carlos Guerra-Almonacid; Jaime Hincapié-García; Maria Teresa Rugeles; Juan Carlos Hernández

    doi:10.1101/2021.03.01.433498 Date: 2021-03-03 Source: bioRxiv

    Introduction: SARS-CoV-2 has caused a pandemic of historic proportions and continues to spread worldwide. Currently, there is no effective therapy against this virus. This article evaluated the in vitro antiviral effect of Atorvastatin against SARS-CoV-2 and also identified the interaction affinity between Atorvastatin and three SARS-CoV-2 proteins MESHD, using in silico structure-based molecular docking approach. Materials and methods: The antiviral activity of Atorvastatin against SARS-CoV-2 was evaluated by three different treatment strategies using a clinical isolate of SARS-CoV-2. The interaction of Atorvastatin with Spike, RNA-dependent RNA polymerase PROTEIN ( RdRp PROTEIN) and 3C-like protease ( 3CLpro PROTEIN) was evaluated by molecular docking. Results: Atorvastatin showed anti-SARS-CoV-2 activity of 79%, 54.8%, 22.6% and 25% at 31.2, 15.6, 7.9, and 3.9 {micro}M, respectively, by pre-post-treatment strategy. In addition, atorvastatin demonstrated an antiviral effect of 26.9% at 31.2 {micro}M by pre-infection treatment. This compound also inhibited SARS-CoV-2 in 66.9%, 75%, 27.9% and 29.2% at concentrations of 31.2, 15.6, 7.9, and 3.9 {micro}M, respectively, by post-infection treatment. The interaction of atorvastatin with SARS-CoV-2 Spike PROTEIN SARS-CoV-2 Spike MESHD, RdRp PROTEIN and 3CL protease PROTEIN yielded a binding affinity of -8.5 Kcal/mol, -6.2 Kcal/mol, and -7.5 Kcal/mol, respectively. Conclusion: Our study demonstrated the in vitro anti-SARS-CoV-2 activity of Atorvastatin, mainly against the late steps of the viral replicative cycle. A favorable binding affinity with viral proteins by bioinformatics methods was also shown. Due to its low cost, availability, well-established safety and tolerability, and the extensive clinical experience of atorvastatin, it could prove valuable in reducing morbidity and mortality from COVID-19 MESHD.

    The impact of mutations on the structural and functional properties of SARS-CoV-2 proteins: A comprehensive bioinformatics analysis

    Authors: Aqsa Ikram; Anam Naz; Faryal Awan; Bisma Rauff; Ayesha Obaid; Mohamad S. Hakim; Arif Malik

    doi:10.1101/2021.03.01.433340 Date: 2021-03-01 Source: bioRxiv

    An in-depth analysis of first wave SARS-CoV-2 genome is required to identify various mutations that significantly affect viral fitness MESHD. In the present study, we have performed comprehensive in-silico mutational analysis of 3C-like protease ( 3CLpro PROTEIN), RNA dependent RNA polymerase PROTEIN ( RdRp PROTEIN), and spike (S) proteins PROTEIN with the aim of gaining important insights into first wave virus mutations and their functional and structural impact on SARS-CoV-2 proteins. Our integrated analysis gathered 3465 SARS-CoV-2 sequences and identified 92 mutations in S, 37 in RdRp PROTEIN, and 11 in 3CLpro PROTEIN regions. The impact of those mutations was also investigated using various in silico approaches. Among these 32 mutations in S, 15 in RdRp PROTEIN, and 3 in 3CLpro PROTEIN proteins are found to be deleterious in nature and could alter the structural and functional behavior of the encoded proteins. D614G mutation in spike and P323L in RdRp PROTEIN are the globally dominant variants with a high frequency. Most of them have also been found in the binding moiety of the viral proteins which determine their critical involvement in the host-pathogen interactions and drug targets. The findings of the current study may facilitate better understanding of COVID-19 MESHD diagnostics, vaccines, and therapeutics.

    Evolving Infection Paradox of SARS-CoV-2: Fitness Costs Virulence?

    Authors: A. S. M. Rubayet Ul Alam; Ovinu Kibria Islam; Md. Shazid Hasan; Mir Raihanul Islam; Shafi Mahmud; Hassan M. AlEmran; Iqbal K Jahid; Keith A. Crandall; M. Anwar Hossain

    doi:10.1101/2021.02.21.21252137 Date: 2021-02-23 Source: medRxiv

    Background: SARS-CoV-2 is continuously spreading worldwide at an unprecedented scale and evolved into seven clades according to GISAID where four (G, GH, GR and GV) are globally prevalent in 2020. These major predominant clades of SARS-CoV-2 are continuously increasing COVID-19 MESHD cases worldwide; however, after an early rise in 2020, the death-case ratio has been decreasing to a plateau. G clade viruses contain four co-occurring mutations in their genome (C241T+C3037T+C14408T: RdRp PROTEIN.P323L+A23403G:spike.D614G). GR, GH, and GV strains are defined by the presence of these four mutations in addition to the clade-featured mutation in GGG28881-28883AAC:N. RG203-204KR, G25563T: ORF3a PROTEIN.Q57H, and C22227T:spike.A222V+C28932T-N.A220V+G29645T, respectively. The research works are broadly focused on the spike protein PROTEIN mutations that have direct roles in receptor binding, antigenicity, thus viral transmission and replication fitness. However, mutations in other proteins might also have effects on viral pathogenicity and transmissibility. How the clade-featured mutations are linked with viral evolution in this pandemic through gearing their fitness MESHD and virulence is the main question of this study. Methodology: We thus proposed a hypothetical model, combining a statistical and structural bioinformatics approach, endeavors to explain this infection paradox by describing the epistatic effects of the clade-featured co-occurring mutations on viral fitness MESHD and virulence. Results and Discussion: The G and GR/GV clade strains represent a significant positive and negative association, respectively, with the death-case ratio (incidence rate ratio or IRR = 1.03, p <0.001 and IRR= 0.99/0.97, p < 0.001), whereas GH clade strains showed no association with the Docking analysis showed the higher infectiousness of a spike mutant through more favorable binding of G614 with the elastase-2 HGNC. RdRp PROTEIN mutation p.P323L significantly increased genome-wide mutations (p<0.0001) since more expandable RdRp PROTEIN (mutant)- NSP8 PROTEIN interaction may accelerate replication. Superior RNA stability and structural variation at NSP3 HGNC NSP3 PROTEIN:C241T might impact upon protein or RNA interactions. Another silent 5'UTR:C241T mutation might affect translational efficiency and viral packaging. These G-featured co-occurring mutations might increase the viral load, alter immune responses in host and hence can modulate intra-host genomic plasticity. An additional viroporin ORF3a PROTEIN:p.Q57H mutation, forming GH-clade, prevents ion permeability by cysteine (C81)-histidine (H57) inter-transmembrane-domain interaction mediated tighter constriction of the channel pore and possibly reduces viral release and immune response. GR strains, four G clade mutations and N:p.RG203-204KR, would have stabilized RNA interaction by more flexible and hypo-phosphorylated SR-rich region. GV strains seemingly gained the evolutionary advantage of superspreading event through confounder factors; nevertheless, N:p.A220V might affect RNA binding. Conclusion: These hypotheses need further retrospective and prospective studies to understand detailed molecular and evolutionary events featuring the fitness MESHD and virulence of SARS-CoV-2.

    Increased SAR-CoV-2 shedding associated with reduced disease severity despite continually emerging genetic variants

    Authors: Cynthia Y Tang; Yang Wang; Cheng Gao; David R Smith; Jane A McElroy; Tao Li; Karen Segovia; Tricia Haynes; Richard Hammer; Christopher Sampson; Detlef Ritter; Christopher Schulze; Robin Trotman; Grace M Lidl; Richard Webby; Jun Hang; Xiu-Feng Wan

    doi:10.1101/2021.02.03.21250928 Date: 2021-02-05 Source: medRxiv

    Since the first report of SARS-CoV-2 in December 2019, genetic variants have continued to emerge, complicating strategies for mitigating the disease burden of COVID-19 MESHD. In this study, we investigated the emergence and spread of SARS-CoV-2 genetic variants in Missouri, examined viral shedding over time, and analyzed the associations among emerging genetic variants, viral shedding, and disease severity. The study population included COVID-19 MESHD positive patients from CoxHealth (Springfield, Missouri) and University of Missouri Health Care (UMHC; Columbia, Missouri) between March and October 2020. All positive SARS-CoV-2 nasopharyngeal swabs (n=8,735) from March-October 2020 were collected. Available viral genomes (n=184) from March to July were sequenced. Hospitalization status and length of stay were extracted from medical charts of 1,335 patients (UMHC and sequenced patients). The primary outcome was hospitalization status (yes or no) and length of hospital stay (days). For the 1,335 individuals, 44 were hospitalized and four died due to COVID-19 MESHD. The average age was 34.35 (SD=16.82), with 55.1% females (n=735) and 44.7% males (n=596). Multiple introductions of SARS-CoV-2 into Missouri, primarily from Australia, Europe, and domestic states, were observed. Four local lineages rapidly emerged and spread across urban and rural regions in Missouri. While most Missouri viruses harbored Spike-D614G mutations, many unreported mutations were identified among Missouri viruses, including seven in the RNA-dependent RNA polymerase PROTEIN complex and Spike protein PROTEIN that were positively selected. A 15.6-fold increase in viral RNA levels in swab samples occurred from March to May and remained elevated through October. Accounting for comorbidities, individuals test-positive for COVID-19 MESHD with high viral loads were less likely to be hospitalized (odds ratio=0.39, 95% confidence interval=0.20, 0.77) and more likely to be discharged from the hospital sooner (hazard ratio=2.9, p=0.03) than those with low viral loads. Overall, the first eight months of the pandemic in Missouri saw multiple locally acquired mutants emerge and dominate in urban and rural locations. Although we were unable to find associations between specific variants and greater disease severity, Missouri COVID-positive individuals that presented with increased viral shedding had less severe disease by several measures.

    In vitro screening of anti-viral and virucidal effects against SARS-CoV-2 by Hypericum perforatum and Echinacea.

    Authors: Leena Hussein Bajrai; Sherif Ali El-kafrawy; Rabie Saleh Alnahas; Esam Ibraheem Azhar; Ayush Jain; Roman Sarkar; Abhishek Dubey; Syed Azeez Tehseen; Sharvan Sehrawat; Florian Douam; Nicholas Crossland; Madison M Hebert; Scott W Benzinger; Koushik T Sinha; Keith T Gagnon; Rafael Rezende; Eduardo Cilli; Guilherme Malafaia; Nicholas Thomson; Caroline Buckee; Firdausi Qadri; Tahmina Shirin

    doi:10.1101/2021.01.11.426295 Date: 2021-01-13 Source: bioRxiv

    Special Infectious Agent Unit in King Fahd Medical Research Center at King Abdulaziz University, Jeddah, Saudi Arabia, has pursed the anti-viral project field to optimize the group of medicinal plants for human-infectious diseases. We have begun virtually in this field since COVID-19 pandemic MESHD, besides our divergence in the infectious agents. In this study and based on the previous review, Hypericum perforatum (St. Johns Wort) and Echinacea (gaia HERBS(R)) were tested in vitro using Vero E6 cells for their anti-viral effects against the newly identified Severe Acute Respiratory Syndrome Coronavirus-2 MESHD (SARS-CoV-2) through its infectious cycle from 0 to 48 hours post infection. The hypericin (0.9 mg) of H. perforatum and the different parts (roots, seeds, aerial) of two types of Echinacea species (Echinacea purpurea and Echinacea angustifolia) were examined their efficacy in certain concentration and under light-dependent anti-viral activities to measure the inhibition of the SARS-CoV-2 mRNA expression of RNA-dependent RNA polymerase PROTEIN ( RdRP PROTEIN) gene and the viral load with quantitative real-time polymerase chain reaction (qRT-PCR), and to assess the neutralization of the SARS-CoV-2 spike PROTEIN receptor binding on cell culture assay. Interestingly, the mixture (H.E.) of 100 mg/mL of H. perforatum and Echinacea was tested too on SARS-CoV-2 and showed crucial anti-viral activity competing H. perforatum then Echinacea effects as anti-viral treatment. Therefore, the results of gaia HERBS(R) products, H. perforatum and Echinacea species, applied in this study showed significant anti-viral and virucidal effects in the following order of potency: H. perforatum, H.E., and Echinacea on SARS-CoV-2 infectious cycle; and will definitely required a set up of clinical trial with specific therapeutic protocol based on the outcome of this study. Author SummaryAfter an outbreak of Rift Valley Fever MESHD in the Southern region of Saudi Arabia, particularly in May 2003, Special Infectious Agents Unit (SIAU) was established and founded by Prof. Esam Ibraheem Azhar. This unit contains a full range of facilities including Biosafety Level 3, allows him and his research groups to ambulate and culture risk group 3 viruses in Saudi Arabia & Gulf States for the first time. Since that time, SIAU MESHD and our international collaboration have been extended to implement a standard protocols in the infectious agents diagnostics procedure through different mode of collaboration including exchange of expertise, joint research program and more recently a technology transfer agreements with number of international institute sharing same interests. Furthermore, we have been engaged in number of researches related to Hajj & Umrah plus number of national services with the Ministry of Health (MOH) through which, we utilize our Mobile biosafety level 3 Lab to enhance the diagnostics of MERS CoV in the Holly sites during Hajj since 2014. In our SIAU and with a powerful team, we have excellent researches made valuable contributions through in vivo and in vitro animal and human studies, and several human viral pathogens which are a threat to global health security due to millions of pilgrims visiting Saudi Arabia every year from 182 countries: with particular areas of interests in: Alkhurma Viral Hemorrhagic Fever MESHD, Dengue Hemorrhagic Fever Viruses, Rift Valley Fever Virus, MERS-CoV MESHD and more recently the new global infectious diseases threat, Sever Acute Respiratory Syndrome Coronavirus-2 MESHD (SARS-CoV-2).

    Unravelling Vitamins as Wonder Molecules for Covid-19 MESHD Management via Structure-based Virtual Screening

    Authors: Medha Pandya; Sejal Shah; Dhanalakshmi Menamadathil; Ayushman Gadnayak; Tanzil Juneja; Amisha Patel; Kajari Das; Jayashankar Das

    doi:10.21203/ Date: 2021-01-09 Source: ResearchSquare

    The emergence situation of coronavirus disease 2019 MESHD ( COVID-19 MESHD) pandemic has realised the global scientific communities to develop strategies for immediate priorities and long-term approaches for utilization of existing knowledge and resources which can be diverted to pandemic preparedness planning. Lack of proper vaccine candidate and therapeutic management has accelerated the researchers to repurpose the existing drugs with known preclinical and toxicity MESHD profiles, which can easily enter Phase 3 or 4 or can be used directly in clinical settings. We focused to justify even exploration of supplements, nutrients and vitamins to dampen the disease burden of the current pandemic may play a crucial role for its management. We have explored structure based virtual screening of 15 vitamins against non-structural ( NSP3 HGNC NSP3 PROTEIN, NSP5 PROTEIN NSP5 HGNC, ORF7a PROTEIN, NSP12 PROTEIN, ORF3a PROTEIN), structural (Spike & Hemagglutinin esterase) and host protein furin HGNC. The in silico analysis exhibited that vitamin B12, Vitamin B9, Vitamin D3 determined suitable binding while vitamin B15 manifested remarkable H-bond interactions with all targets. Vitamin B12 bestowed the lowest energies with human furin HGNC and SARS-COV-2 RNA dependent RNA polymerase PROTEIN. Furin HGNC mediated cleavage of the viral spike glycoprotein PROTEIN is directly related to enhanced virulence of SARS-CoV-2. In contrast to these, vitamin B12 showed zero affinity with SARS-CoV-2 spike PROTEIN protein. These upshots intimate that Vitamin B12 could be the wonder molecule to shrink the virulence by hindering the furin HGNC mediated entry of spike to host cell. These identified molecules may effectively assist in SARS-CoV-2 therapeutic management to boost the immunity by inhibiting the virus imparting relief in lung inflammation MESHD.

    Different selection dynamics of S and RdRp PROTEIN between SARS-CoV-2 genomes with and without the dominant mutations

    Authors: Necla Koçhan; Doğa Eskier; Asli Suner; Gökhan Karakülah; Yavuz Oktay

    doi:10.1101/2021.01.03.20237602 Date: 2021-01-05 Source: medRxiv

    SARS-CoV-2 is a betacoronavirus responsible for the COVID-19 pandemic MESHD that has affected millions of people worldwide, with no dedicated treatment or vaccine currently available. As pharmaceutical research against and the most frequently used tests for SARS-CoV-2 infection MESHD both depend on the genomic and peptide sequences of the virus for their efficacy, understanding the mutation rates and content of the virus is critical. Two key proteins for SARS-CoV-2 infection MESHD and replication are the S protein PROTEIN, responsible for viral entry into the cells, and RdRp PROTEIN, the RNA polymerase responsible for replicating the viral genome. Due to their roles in the viral cycle, these proteins are crucial for the fitness MESHD and infectiousness of the virus. Our previous findings had shown that the two most frequently observed mutations in the SARS-CoV-2 genome, 14408C>T in the RdRp PROTEIN coding region, and 23403A>G in the S gene, are correlated with higher mutation density over time. In this study, we further detail the selection dynamics and the mutation rates of SARS-CoV-2 genes, comparing them between isolates carrying both mutations, and isolates carrying neither. We find that the S gene and the RdRp PROTEIN coding region show the highest variance between the genotypes, and their selection dynamics contrast each other over time. The S gene displays higher positive selection in mutant isolates early on, and undergoes increasing negative selection over time, whereas the RdRp PROTEIN region in the mutant isolates shows strong negative selection throughout the pandemic.

    A recombinant fragment of Human surfactant protein D HGNC binds Spike protein PROTEIN and inhibits infectivity and replication of SARS-CoV-2 in clinical samples

    Authors: Taruna Madan; Barnali Biswas; Praveen Varghese; Rambhadur Subedi; Hrishikesh Pandit; Susan Idicula-Thomas; Indra Kundu; Sheetalnath Babasaheb Rooge; Reshu Aggarwal; Dinesh Tripathi; Savneet Kaur; Ekta Gupta; Sanjeev Gupta

    doi:10.1101/2020.12.18.423415 Date: 2020-12-18 Source: bioRxiv

    Rationale COVID-19 MESHD is an acute infectious disease MESHD caused by the Severe Acute Respiratory Syndrome Coronavirus 2 MESHD (SARS-CoV-2). Human surfactant protein D HGNC ( SP-D HGNC) is known to interact with spike protein PROTEIN of SARS-CoV, but its immune-surveillance against SARS-CoV-2 is not known. ObjectiveThis study aimed to examine the potential of a recombinant fragment of human SP-D HGNC (rfhSP-D) as an inhibitor of replication and infection of SARS-CoV-2 MESHD. MethodsrfhSP-D interaction with spike protein PROTEIN of SARS-CoV-2 and hACE-2 receptor was predicted via docking analysis. The inhibition of interaction between spike protein PROTEIN and ACE-2 HGNC by rfhSP-D was confirmed using direct and indirect ELISA. The effect of rfhSP-D on replication and infectivity of SARS-CoV-2 from clinical samples was studied by measuring the expression of RdRp PROTEIN gene of the virus using qPCR. Measurements and Main ResultsIn-silico interaction studies indicated that three amino acid residues in the RBD of spike of SARS-CoV-2 PROTEIN were commonly involved in interacting with rfhSP-D and ACE-2 HGNC. Studies using clinical samples of SARS-CoV-2 positive cases (asymptomatic, n=7 and symptomatic, n=8 and negative controls n=15) demonstrated that treatment with 5M rfhSP-D inhibited viral replication by ~5.5 fold and was more efficient than Remdesivir (100 M). Approximately, a 2-fold reduction in viral infectivity was also observed after treatment with 5M rfhSP-D. ConclusionsThese results conclusively demonstrate that the calcium independent rfhSP-D mediated inhibition of binding between the receptor binding domain of the S1 subunit of the SARS-CoV-2 spike PROTEIN protein and human ACE-2 HGNC, its host cell receptor, and a significant reduction in SARS-CoV-2 infection MESHD and replication in-vitro.

    Consistent and High-Frequency Identification of an Intra-Sample Genetic Variant of SARS-CoV-2 with Elevated Fusogenic Properties

    Authors: Lynda Rocheleau; Geneviève Laroche; Kathy Fu; Marceline Côté; Patrick M Giguère; Marc-André Langlois; Martin Pelchat; Peter Mohr; Remo Gamboni; Thanos D. Halazonetis; Kai-Thomas Schneider; Kristian Daniel Ralph Roth; Philipp Kuhn; Peggy Riese; Dorina Schäckermann; Janin Korn; Allan Koch; Susanne Zock-Emmenthal; Marlies Becker; Margitta Scholz; Gustavo Marçal Schmidt Garcia Moreira; Esther Veronika Wenzel; Giulio Russo; Hendrikus S.P. Garritsen; Sebastian Casu; Andreas Gerstner; Günter Roth; Andreas Hermann; Thomas Schirrmann; Stefan Dübel; André Frenzel; Joop Van den Heuvel; Luka Cicin-Sain; Maren Schubert; Michael Hust

    doi:10.1101/2020.12.03.409714 Date: 2020-12-03 Source: bioRxiv

    The severe acute respiratory syndrome coronavirus 2 MESHD (SARS-CoV-2) has a genome comprised of a ~30K nucleotides non-segmented, positive single-stranded RNA. Although its RNA-dependent RNA polymerase PROTEIN exhibits exonuclease proofreading activity, viral sequence diversity can be induced by replication errors and host factors. These variations can be observed in the population of viral sequences isolated from infected host cells and are not necessarily reflected in the genome of transmitted founder viruses. We profiled intra-sample genetic diversity of SARS-CoV-2 variants using 15,289 high-throughput sequencing datasets from infected individuals and infected cell lines. Most of the genetic variations observed, including C->U and G->U, were consistent with errors due to heat-induced DNA damage during sample processing, and/or sequencing protocols. Despite high mutational background, we confidently identified intra-variable positions recurrent in the samples analyzed, including several positions at the end of the gene encoding the viral S protein PROTEIN. Notably, most of the samples possesses a C->A missense mutation resulting in the S protein PROTEIN lacking the last 20 amino acids (S{Delta}20). Here we demonstrate that S{Delta}20 exhibits increased cell-to-cell fusion and syncytia formations MESHD. Our findings are suggestive of the consistent emergence of high-frequency viral quasispecies that are not horizontally transmitted but involved in intra-host infection MESHD and spread. Author summaryThe severe acute respiratory syndrome coronavirus 2 MESHD (SARS-CoV-2) and its associated disease, COVID-19 MESHD, has caused significant worldwide mortality and unprecedented economic burden. Here we studied the intra-host genetic diversity of SARS-CoV-2 genomes and identified a high-frequency and recurrent non-sense mutation yielding a truncated form of the viral spike protein PROTEIN, in both human COVID-19 MESHD samples and in cell culture experiments. Through the use of a functional assay, we observed that this truncated spike protein PROTEIN displays an elevated fusogenic potential and forms syncytia. Given the high frequency at which this mutation independently arises across various samples, it can be hypothesized that this deletion mutation provides a selective advantage to viral replication and may also have a role in pathogenesis in humans.

The ZB MED preprint Viewer preVIEW includes all COVID-19 related preprints from medRxiv and bioRxiv, from ChemRxiv, from ResearchSquare, from arXiv and from and is updated on a daily basis (7am CET/CEST).
The web page can also be accessed via API.



MeSH Disease
HGNC Genes
SARS-CoV-2 Proteins

Export subcorpus as...

This service is developed in the project nfdi4health task force covid-19 which is a part of nfdi4health.

nfdi4health is one of the funded consortia of the National Research Data Infrastructure programme of the DFG.