Corpus overview


MeSH Disease

HGNC Genes

SARS-CoV-2 proteins

There are no SARS-CoV-2 protein terms in the subcorpus


SARS-CoV-2 Proteins
    displaying 1 - 2 records in total 2
    records per page

    Differential plasmacytoid dendritic cell phenotype and type I Interferon response in asymptomatic and severe COVID-19 infection MESHD

    Authors: Martina Severa; Roberta Antonina Diotti; Marilena Paola Etna; Fabiana Rizzo; Stefano Fiore; Daniela Ricci; Marco Iannetta; Alessandro Sinigaglia; Alessandra Lodi; Nicasio Mancini; Elena Criscuolo; Massimo Clementi; Massimo Andreoni; Stefano Balducci; Luisa Barzon; Paola Stefanelli; Nicola Clementi; Eliana Coccia

    doi:10.1101/2021.04.17.440278 Date: 2021-04-19 Source: bioRxiv

    SARS-CoV-2 fine-tunes the interferon (IFN)-induced antiviral responses, which play a key role in preventing coronavirus disease 2019 MESHD ( COVID-19 MESHD) progression. Indeed, critically ill MESHD patients show an impaired type I IFN response accompanied by elevated inflammatory cytokine and chemokine levels, responsible for cell and tissue damage and associated multi-organ failure MESHD. Here, the early interaction between SARS-CoV-2 and immune cells was investigated by interrogating an in vitro human peripheral blood mononuclear cell (PBMC)-based experimental model. We found that, even in absence of a productive viral replication, the virus mediates a vigorous TLR7 HGNC/8-dependent production of both type I and III IFNs and inflammatory cytokines and chemokines, known to contribute to the cytokine storm observed in COVID-19 MESHD. Interestingly, we observed how virus-induced type I IFN secreted by PBMC enhances anti-viral response in infected lung epithelial cells, thus, inhibiting viral replication. This type I IFN was released by plasmacytoid dendritic cells (pDC) via an ACE-2 HGNC-indipendent mechanism. Viral sensing regulates pDC phenotype by inducing cell surface expression of PD-L1 HGNC marker, a feature of type I IFN producing cells. Coherently to what observed in vitro, asymptomatic SARS-CoV-2 infected MESHD subjects displayed a similar pDC phenotype associated to a very high serum type I IFN level and induction of anti-viral IFN-stimulated genes in PBMC. Conversely, hospitalized patients with severe COVID-19 MESHD display very low frequency of circulating pDC with an inflammatory phenotype and high levels of chemokines and pro-inflammatory cytokines in serum. This study further shed light on the early events resulting from the interaction between SARS-CoV-2 and immune cells occurring in vitro and confirmed ex vivo. These observations can improve our understanding on the contribution of pDC/type I IFN axis in the regulation of the anti-viral state in asymptomatic and severe COVID-19 MESHD patients.

    Deep RNA Sequencing of Intensive Care Unit Patients with COVID-19 MESHD

    Authors: Sean F Monaghan; Alger M Fredericks; Maximilian S Jentzsch; William G Cioffi; Maya Cohen; William G Fairbrother; Shivam J Gandhi; Elizabeth O Harrington; Gerard J Nau; Jonathan S Reichner; Corey E Ventetuolo; Mitchell M Levy; Alfred Ayala

    doi:10.1101/2021.01.11.21249276 Date: 2021-01-13 Source: medRxiv

    Purpose COVID-19 MESHD has impacted millions of patients across the world. Molecular testing occurring now identifies the presence of the virus at the sampling site: nasopharynx, nares, or oral cavity. RNA sequencing has the potential to establish both the presence of the virus and define the hosts response in COVID-19 MESHD. MethodsSingle center, prospective study of patients with COVID-19 MESHD admitted to the intensive care unit where deep RNA sequencing (>100 million reads) of peripheral blood with computational biology analysis was done. All patients had positive SARS-CoV-2 PCR. Clinical data was prospectively collected. ResultsWe enrolled fifteen patients at a single hospital. Patients were critically ill with a mortality of 47% and 67% were on a ventilator. All the patients had the SARS-CoV- MESHD2 RNA identified in the blood in addition to RNA from other viruses, bacteria, and archaea. The expression of many immune modulating genes, including PD-L1 HGNC and PD-L2 HGNC, were significantly different in patients who died from COVID-19 MESHD. Some proteins were influenced by alternative transcription and splicing events, as seen in HLA-C, HLA-E HGNC, NRP1 HGNC and NRP2 HGNC. Entropy calculated from alternative RNA splicing and transcription start/end predicted mortality in these patients. ConclusionsCurrent upper respiratory tract testing for COVID-19 MESHD only determines if the virus is present. Deep RNA sequencing with appropriate computational biology may provide important prognostic information and point to therapeutic foci to be precisely targeted in future studies. Take Home MessageDeep RNA sequencing provides a novel diagnostic tool for critically ill MESHD patients. Among ICU patients with COVID-19 MESHD, RNA sequencings can identify gene expression, pathogens (including SARS-CoV-2), and can predict mortality. TweetDeep RNA sequencing is a novel technology that can assist in the care of critically ill COVID-19 MESHD patients & can be applied to other disease

The ZB MED preprint Viewer preVIEW includes all COVID-19 related preprints from medRxiv and bioRxiv, from ChemRxiv, from ResearchSquare, from arXiv and from and is updated on a daily basis (7am CET/CEST).
The web page can also be accessed via API.



MeSH Disease
HGNC Genes
SARS-CoV-2 Proteins

Export subcorpus as...

This service is developed in the project nfdi4health task force covid-19 which is a part of nfdi4health.

nfdi4health is one of the funded consortia of the National Research Data Infrastructure programme of the DFG.