Corpus overview


Overview

MeSH Disease

HGNC Genes

SARS-CoV-2 proteins

Filter

Genes
Diseases
SARS-CoV-2 Proteins
    displaying 1 - 2 records in total 2
    records per page




    Exaggerated cytokine production in human peripheral blood mononuclear cells by recombinant SARS-CoV-2 spike PROTEIN glycoprotein S1 and its inhibition by dexamethasone

    Authors: Olumayokun A Olajide; Victoria U Iwuanyanwu; Izabela Lepiarz-Raba; Alaa A Al-Hindawi

    doi:10.1101/2021.02.03.429536 Date: 2021-02-03 Source: bioRxiv

    An understanding of the pathological inflammatory mechanisms involved in SARS CoV-2 virus infection MESHD is necessary in order to discover new molecular pharmacological targets for SARS-CoV-2 spike PROTEIN glycoprotein. In this study, the effects of a recombinant SARS CoV-2 spike PROTEIN glycoprotein S1 was investigated in human peripheral blood mononuclear cells (PBMCs). Stimulation with spike glycoprotein S1 PROTEIN (100 ng/mL) resulted in significant elevation in the production of TNF HGNC, IL-6 HGNC, IL-1{beta HGNC} and IL-8 HGNC. However, pre-treatment with dexamethasone (100 nM) caused a significant reduction in the release of these cytokines. Further experiments revealed that S1 stimulation of PBMCs increased phosphorylation of NF-{kappa}B HGNC p65 HGNC and I{kappa}B, while increasing I{kappa}B degradation. DNA binding of NF-{kappa}B HGNC p65 HGNC was also significantly increased following stimulation with S1. Treatment of PBMCs with dexamethasone (100 nM) or BAY11-7082 (1 M) resulted in inhibition of S1-induced NF-{kappa}B HGNC activation. Activation of p38 HGNC MAPK by S1 was blocked in the presence of dexamethasone and SKF 86002. CRID3, but not dexamethasone pre-treatment produced significant inhibition of S1-induced activation of NLRP3 HGNC/ caspase 1 HGNC. Further experiments revealed that S1-induced increase in the production of TNF HGNC, IL-6 HGNC, IL-1{beta HGNC} and IL-8 HGNC was reduced in the presence of BAY11-7082 and SKF 86002, while CRID3 pre-treatment resulted in the reduction of IL-1{beta HGNC} production. These results suggest that SARS-CoV-2 spike PROTEIN glycoprotein S1 stimulate PBMCs to release pro inflammatory cytokines through mechanisms involving activation of NF-{kappa}B HGNC, p38 MAPK and NLRP3 HGNC inflammasome. It is proposed that clinical benefits of dexamethasone in COVID-19 MESHD is possibly due to its anti-inflammatory activity in reducing SARS-CoV-2 cytokine storm.

    Comparative transcriptome analysis reveals key epigenetic targets in SARS-CoV-2 infection MESHD

    Authors: Marisol Salgado-Albarran; Erick I. Navarro-Delgado; Aylin Del Moral-Morales; Nicolas Alcaraz; Jan Baumbach; Rodrigo Gonzalez-Barrios; Ernesto Soto-Reyes

    id:2011.08902v1 Date: 2020-11-17 Source: arXiv

    COVID-19 MESHD is an infection caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome coronavirus 2 MESHD), which has caused a global outbreak. Current research efforts are focused on the understanding of the molecular mechanisms involved in SARS-CoV-2 infection MESHD in order to propose drug-based therapeutic options. Transcriptional changes due to epigenetic regulation are key host cell responses to viral infection MESHD and have been studied in SARS-CoV and MERS-CoV; however, such changes are not fully described for SARS-CoV-2. In this study, we analyzed multiple transcriptomes obtained from cell lines infected with MERS-CoV, SARS-CoV and SARS-CoV-2 MESHD, and from COVID-19 MESHD patient-derived samples. Using integrative analyses of gene co-expression networks and de-novo pathway enrichment, we characterize different gene modules and protein pathways enriched with Transcription Factors or Epifactors relevant for SARS-CoV-2 infection MESHD. We identified EP300 HGNC, MOV10 HGNC, RELA HGNC and TRIM25 HGNC as top candidates, and more than 60 additional proteins involved in the epigenetic response during viral infection that have therapeutic potential. Our results show that targeting the epigenetic machinery could be a feasible alternative to treat COVID-19 MESHD.

The ZB MED preprint Viewer preVIEW includes all COVID-19 related preprints from medRxiv and bioRxiv, from ChemRxiv, from ResearchSquare, from arXiv and from Preprints.org and is updated on a daily basis (7am CET/CEST).
The web page can also be accessed via API.

Sources


Annotations

All
None
MeSH Disease
HGNC Genes
SARS-CoV-2 Proteins


Export subcorpus as...

This service is developed in the project nfdi4health task force covid-19 which is a part of nfdi4health.

nfdi4health is one of the funded consortia of the National Research Data Infrastructure programme of the DFG.