Corpus overview


Overview

MeSH Disease

HGNC Genes

SARS-CoV-2 proteins

ProteinS (1)


Filter

Genes
Diseases
SARS-CoV-2 Proteins
    displaying 1 - 2 records in total 2
    records per page




    Discovery of a AhR HGNC flavonoid agonist that counter-regulates ACE2 HGNC expression in rodent models of inflammation MESHD and attenuates ACE2 HGNC-SARS-CoV2 interaction in vitro

    Authors:

    doi:10.1101/2021.02.24.432203 Date: 2021-02-24 Source: bioRxiv

    The severe acute respiratory syndrome MESHD (SARS)-CoV-2, a newly emerged coronavirus first identified in 2019, is the pathogenetic agent od Corona Virus Induced Disease MESHD (COVID)19. The virus enters the human cells after binding to the angiotensin converting enzyme (ACE) 2 HGNC receptor in target tissues. ACE2 HGNC expression is induced in response to inflammation MESHD. The colon expression of ACE2 HGNC is upregulated in patients with inflammatory bowel disease MESHD ( IBD MESHD), highlighting a potential risk of intestinal inflammation MESHD in promoting viral entry in the human body. Because mechanisms that regulate ACE2 HGNC expression in the intestine are poorly understood and there is a need of anti-SARS-CoV2 therapies, we have settled to investigate whether natural flavonoids might regulate the expression of ACE2 HGNC in intestinal models of inflammation MESHD. The results of these studies demonstrated that pelargonidin, a natural flavonoid bind and activates the Aryl hydrocarbon Receptor HGNC ( AhR HGNC) in vitro and reverses intestinal inflammation MESHD caused by chronic exposure to high fat diet or to the intestinal braking-barrier agent DSS in a AhR HGNC-dependent manner. In these two models, development of colon inflammation MESHD associated with upregulation of ACE2 HGNC mRNA expression. Colon levels of ACE2 HGNC mRNA were directly correlated with TNF HGNC mRNA levels. In contrast to ACE2 HGNC the angiotensin 1-7 receptor MAS was downregulated in the inflamed tissues. Molecular docking studies suggested that pelargonidin binds a fatty acid binding pocket on the receptor binding domain of SARS-CoV2 Spike protein PROTEIN. In vitro studies demonstrated that pelargonidin significantly reduces the binding of SARS-CoV2 Spike protein PROTEIN to ACE2 HGNC and reduces the SARS-CoV2 replication in a concentration-dependent manner. In summary, we have provided evidence that a natural flavonoid might hold potential in reducing intestinal inflammation MESHD and ACE2 HGNC induction in the inflamed colon in a AhR HGNC-dependent manner.

    Ethnicity and risk of death in patients hospitalised for COVID-19 MESHD infection: an observational cohort study in an urban catchment area

    Authors: Elizabeth Sapey; Suzy Gallier; Chris Mainey; Peter Nightingale; David McNulty; Hannah Crothers; Felicity Evison; Katharine Reeves; Domenico Pagano; Alastair K Denniston; Krishnarajah Nirantharakumar; Peter Diggle; Simon Ball

    doi:10.1101/2020.05.05.20092296 Date: 2020-05-09 Source: medRxiv

    Objectives. To determine if specific ethnic groups are at higher risk of mortality from COVID19 MESHD infection. Design. Retrospective cohort study Setting. University Hospitals Birmingham NHS Foundation Trust (UHB) in Birmingham, UK Participants. Patients with confirmed SARS CoV 2 infection MESHD requiring admission to UHB between 10th March 2020 and 17th April 2020 Exposure. Ethnicity Main outcome measures. Standardised Admission Ratio (SAR) and Standardised Mortality Ratio (SMR) for each ethnicity was calculated using observed sex specific age distributions of COVID19 MESHD admissions/deaths and 2011 census data for Birmingham/Solihull. Hazard Ratio ( aHR HGNC) for mortality was estimated for each ethnic group with white population as reference group, using Cox proportional hazards model adjusting for age, sex, social deprivation MESHD and co-morbidities, and propensity score matching. Results. 2217 patients admitted to UHB with a proven diagnosis of COVID19 MESHD were included. 58.2% were male, 69.5% White and the majority (80.2%) had co morbidities. 18.5% were of South Asian ethnicity, and these patients were more likely to be younger (median age 61 years vs.77 years), have no co morbidities (27.8% vs. 16.6%) but a higher prevalence of diabetes mellitus MESHD (48.0% vs 28.2%) than White patients. SAR and SMR suggested more admissions and deaths in South Asian patients than would be predicted. South Asian patients were also more likely to present with severe disease despite no delay in presentation since symptom onset. South Asian ethnicity was associated with an increased risk of death; both by Cox regression (Hazard Ratio 1.66 (95%CI 1.32 to 2.10)) after adjusting for age, sex, deprivation and comorbidities and by propensity score matching, (Hazard ratio 1.68 (1.33 to 2.13), using the same factors but categorising ethnicity into South Asian or not. Conclusions. Current evidence suggests those of South Asian ethnicity may be at risk of worse COVID19 MESHD outcomes, further studies need to establish the underlying mechanistic pathways.

The ZB MED preprint Viewer preVIEW includes all COVID-19 related preprints from medRxiv and bioRxiv, from ChemRxiv, from ResearchSquare, from arXiv and from Preprints.org and is updated on a daily basis (7am CET/CEST).
The web page can also be accessed via API.

Sources


Annotations

All
None
MeSH Disease
HGNC Genes
SARS-CoV-2 Proteins


Export subcorpus as...

This service is developed in the project nfdi4health task force covid-19 which is a part of nfdi4health.

nfdi4health is one of the funded consortia of the National Research Data Infrastructure programme of the DFG.