Corpus overview


Overview

MeSH Disease

HGNC Genes

SARS-CoV-2 proteins

ProteinS (1)


Filter

Genes
Diseases
SARS-CoV-2 Proteins
    displaying 1 - 1 records in total 1
    records per page




    Cross-neutralization of SARS-CoV-2 by HIV-1 specific broadly neutralizing antibodies and polyclonal plasma

    Authors: Nitesh Mishra; Sanjeev Kumar; Swarandeep Singh; Tanu Bansal; Nishkarsh Jain; Sumedha Saluja; Jayanth Kumar Palanichamy; Riyaz A Mir; Subrata Sinha; Kalpana Luthra; Zefeng Wang; Guoqing Zhang; Johan Neyts; Anthony Kelleher; Warwick Britton; Stuart Turville; James A Triccas

    doi:10.1101/2020.12.09.418806 Date: 2020-12-10 Source: bioRxiv

    Cross-reactive epitopes ( CREs HGNC) are similar epitopes on viruses that are recognized or neutralized by same antibodies. The S protein PROTEIN of SARS-CoV-2, similar to type I fusion proteins of viruses such as HIV-1 envelope (Env) and influenza hemagglutinin, is heavily glycosylated. Viral Env glycans, though host derived, are distinctly processed and thereby recognized or accommodated during antibody responses. In recent years, highly potent and/or broadly neutralizing human monoclonal antibodies (bnAbs) that are generated in chronic HIV-1 infections MESHD have been defined. These bnAbs exhibit atypical features such as extensive somatic hypermutations, long complementary determining region (CDR) lengths, tyrosine sulfation and presence of insertions/deletions, enabling them to effectively neutralize diverse HIV-1 viruses despite extensive variations within the core epitopes they recognize. As some of the HIV-1 bnAbs have evolved to recognize the dense viral glycans and cross-reactive epitopes ( CREs HGNC), we assessed if these bnAbs cross-react with SARS-CoV-2. Several HIV-1 bnAbs showed cross-reactivity with SARS-CoV-2 while one HIV-1 CD4 binding site bnAb, N6, neutralized SARS-CoV-2. Furthermore, neutralizing plasma antibodies of chronically HIV-1 infected MESHD children showed cross neutralizing activity against SARS-CoV-2. Collectively, our observations suggest that human monoclonal antibodies tolerating extensive epitope variability can be leveraged to neutralize pathogens with related antigenic profile. ImportanceIn the current ongoing COVID-19 pandemic MESHD, neutralizing antibodies have been shown to be a critical feature of recovered patients. HIV-1 bnAbs recognize extensively diverse cross-reactive epitopes and tolerate diversity within their core epitope. Given the unique nature of HIV-1 bnAbs and their ability to recognize and/or accommodate viral glycans, we reasoned that the glycan shield of SARS-CoV-2 spike PROTEIN SARS-CoV-2 spike MESHD protein can be targeted by HIV-1 specific bnAbs. Herein, we showed that HIV-1 specific antibodies cross-react and neutralize SARS-CoV-2. Understanding cross-reactive neutralization epitopes of antibodies generated in divergent viral infections will provide key evidence for engineering so called super-antibodies (antibodies that can potently neutralize diverse pathogens with similar antigenic features). Such cross-reactive antibodies can provide a blueprint upon which synthetic variants can be generated in the face of future pandemics.

The ZB MED preprint Viewer preVIEW includes all COVID-19 related preprints from medRxiv and bioRxiv, from ChemRxiv, from ResearchSquare, from arXiv and from Preprints.org and is updated on a daily basis (7am CET/CEST).
The web page can also be accessed via API.

Sources


Annotations

All
None
MeSH Disease
HGNC Genes
SARS-CoV-2 Proteins


Export subcorpus as...

This service is developed in the project nfdi4health task force covid-19 which is a part of nfdi4health.

nfdi4health is one of the funded consortia of the National Research Data Infrastructure programme of the DFG.