displaying 1 - 2 records in total 2
    records per page




    Natural Killer cell activation, reduced ACE2 HGNC, TMPRSS2 HGNC, cytokines G-CSF HGNC, M-CSF HGNC and SARS-CoV-2-S pseudovirus infectivity by MEK HGNC inhibitor treatment of human cells

    Authors: Lanlan Zhou; Kelsey Huntington; Shengliang Zhang; Lindsey Carlsen; Eui-Young So; Cassandra Parker; Ilyas Sahin; Howard Safran; Suchitra Kamle; Chang-Min Lee; Chun-Geun Lee; Jack A. Elias; Kerry S. Campbell; Mandar T. Naik; Walter J. Atwood; Emile Youssef; Jonathan A. Pachter; Arunasalam Navaraj; Attila A. Seyhan; Olin Liang; Wafik El-Deiry

    doi:10.1101/2020.08.02.230839 Date: 2020-08-03 Source: bioRxiv

    COVID-19 MESHD affects vulnerable populations including elderly individuals and patients with cancer MESHD. Natural Killer (NK) cells and innate-immune TRAIL HGNC suppress transformed and virally-infected cells. ACE2 HGNC, and TMPRSS2 HGNC protease promote SARS-CoV-2 infectivity MESHD, while inflammatory cytokines IL-6 HGNC, or G-CSF HGNC worsen COVID-19 MESHD severity. We show MEK HGNC inhibitors (MEKi) VS-6766, trametinib and selumetinib reduce ACE2 HGNC expression in human cells. Chloroquine or hydroxychloroquine increase cleaved active SP-domain of TMPRSS2 HGNC, and this is potentiated by MEKi. In some human cells, remdesivir increases ACE2 HGNC-promoter luciferase-reporter expression, ACE2 HGNC mRNA and protein, and ACE2 HGNC expression is attenuated by MEKi. We show elevated cytokines in COVID-19 MESHD- (+) patient plasma (N=9) versus control (N=11). TMPRSS2 HGNC, inflammatory cytokines G-CSF HGNC, M- CSF HGNC, IL-1a HGNC, IL-6 HGNC and MCP-1 HGNC are suppressed by MEKi alone or in combination with remdesivir. MEKi enhance NK cell (but not T-cell) killing of target-cells, without suppressing TRAIL HGNC-mediated cytotoxicity MESHD. We generated a pseudotyped SARS-CoV-2 virus with a lentiviral core but with the SARS-CoV-2 D614 or G614 SPIKE (S) protein PROTEIN on its envelope and used VSV-G lentivirus as a negative control. Our results show infection of human bronchial epithelial cells or lung cancer MESHD cells and that MEKi suppress infectivity of the SARS-CoV-2-S pseudovirus following infection MESHD. We show a drug class-effect with MEKi to promote immune responses involving NK cells, inhibit inflammatory cytokines and block host-factors for SARS-CoV-2 infection MESHD leading also to suppression of SARS-CoV-2-S pseudovirus infection MESHD of human cells in a model system. MEKi may attenuate coronavirus infection MESHD to allow immune responses and antiviral agents to control COVID-19 MESHD disease progression and severity.

    Transcriptional landscape of SARS-CoV-2 infection MESHD dismantles pathogenic pathways activated by the virus, proposes unique sex-specific differences and predicts tailored therapeutic strategies

    Authors: Paolo Fagone; Rosella Ciurleo; Salvo Danilo Lombardo; Carmelo Iacobello; Concetta Ilenia Palermo; Yehuda Shoenfeld; Klaus Bendtzen; Placido Bramanti; Ferdinando Nicoletti

    id:2005.01042v1 Date: 2020-05-03 Source: arXiv

    The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease MESHD ( COVID-19 MESHD) has posed a serious threat to global health. As no specific therapeutics are yet available to control disease evolution, more in-depth understanding of the pathogenic mechanisms induced by SARS-CoV-2 will help to characterize new targets for the management of COVID-19 MESHD. The present study identified a specific set of biological pathways altered in primary human lung epithelium upon SARS-CoV-2 infection MESHD, and a comparison with SARS-CoV from the 2003 pandemic was studied. The transcriptomic profiles were also exploited as possible novel therapeutic targets, and anti-signature perturbation analysis predicted potential drugs to control disease progression. Among them, Mitogen-activated protein kinase kinase ( MEK HGNC), serine-threonine kinase ( AKT HGNC), mammalian target of rapamycin HGNC ( mTOR HGNC) and I kappa B Kinase (IKK) inhibitors emerged as candidate drugs. Finally, sex-specific differences that may underlie the higher COVID-19 MESHD mortality in men are proposed.

The ZB MED preprint Viewer preVIEW includes all COVID-19 related preprints from medRxiv and bioRxiv, from ChemRxiv, from ResearchSquare, from arXiv and from Preprints.org and is updated on a daily basis (7am CET/CEST).
The web page can also be accessed via API.

Sources


Annotations

All
None
MeSH Disease
HGNC Genes
SARS-CoV-2 Proteins


Export subcorpus as...

This service is developed in the project nfdi4health task force covid-19 which is a part of nfdi4health.

nfdi4health is one of the funded consortia of the National Research Data Infrastructure programme of the DFG.