Corpus overview


MeSH Disease

Human Phenotype


    displaying 11 - 12 records in total 12
    records per page

    Interference of SARS-CoV-2 with the Homeostasis of Ventilation and Perfusion in the Lung

    Authors: Clemente F. Arias; Francisco J. Acosta; Federica Bertocchini; Cristina Fernández-Arias

    id:10.20944/preprints202005.0177.v1 Date: 2020-05-10 Source:

    A growing number of studies suggest that SARS-CoV-2 could interfere with homeostatic mechanisms in the lung but the implications of this possible interference have not been fully explored in the literature. In this work, we examine the consequences that can be drawn from this hypothesis according to currently available knowledge. We suggest that one such consequence is the potential disruption of normal ventilation and perfusion of lung regions that may be distant from the infection sites. Loss of ventilation might result in local alveolar hypoxia MESHD and contribute to hypoxemia HP hypoxemia MESHD, which in turn could trigger homeostatic responses that enhance blood SERO oxygenation by redistributing pulmonary blood SERO circulation. Sudden changes in perfusion might then lead to the development of hydrostatic edema MESHD edema HP and eventually to vascular remodeling and inflammation MESHD. Therefore, the immune response might not be the only source of the substantial inflammation MESHD observed in lung tissues of patients with severe COVID-19, as is often assumed in the literature. The balance between the homeostatic and the immune reaction in each patient could account for the observed heterogeneity of the clinical manifestations of COVID-19.

    Clinical Pathology of Critical Patient with Novel Coronavirus Pneumonia HP (COVID-19)

    Authors: Weiren Luo; Hong Yu; Jizhou Gou; Xiaoxing Li; Yan Sun; Jinxiu Li; Lei Liu

    id:202002.0407/v4 Date: 2020-03-09 Source:

    Background Critical patients with novel coronavirus pneumonia MESHD pneumonia HP ( COVID-19) have worse outcome and high mortality. However, the histopathology of critical patient with COVID-19 remains undisclosed. Methods We performed the whole lung biopsy, and described the pathological changes of critical COVID-19 patient done with transplant by HE staining, immunohistochemistry and special staining observed under the microscopy. Findings The whole lungs displayed diffuse congestive appearance and partly haemorrhagic necrosis MESHD on gross examination. The haemorrhagic necrosis MESHD was prominently present in outer edge of the right lower lung. The cut surfaces of the lung displayed severe congestive and haemorrhagic changes. The main pathological changes showed massive pulmonary interstitial fibrosis MESHD, and partly hyaline degeneration MESHD, variable degrees of hemorrhagic pulmonary infarction MESHD. Small vessels hyperplasia MESHD, vessel wall thickening, lumen stenosis, occlusion and microthrombosis MESHD formation. Focal monocytes, lymphocytes and plasma SERO cells infiltrating into pulmonary HP interstitium. Bronchiolitis HP Bronchiolitis MESHD and alveolitis with proliferation, atrophy MESHD, desquamation MESHD and squamous MESHD metaplasia of epithelial cells. Atrophy MESHD, vacuolar degeneration, proliferation, desquamation MESHD and squamous MESHD metaplasia in alveolar epithelial MESHD cells. Alveolar MESHD cavity congestion was prominent, and contained mucus, edema HP edema MESHD fluid, desquamated epithelial cells, and inflammatory cells. We also found several multinucleate giant cells and intracytoplasmic viral inclusion bodies. Special stains including Masson stain, sirius red staining, reticular fibers staining indicated massive pulmonary interstitial fibrosis MESHD. Immunohistochemistry showed positive for immunity cells including CD3, CD4, CD8, CD20, CD79a, CD5, CD38 and CD68. Interpretation We demonstrate the pathological findings of critical patient with COVID-19, which might provide a deep insight of the pathogenesis and severity of this disease.

The ZB MED preprint Viewer preVIEW includes all COVID-19 related preprints from medRxiv and bioRxiv, from ChemRxiv, from ResearchSquare, from arXiv and from and is updated on a daily basis (7am CET/CEST).
The web page can also be accessed via API.



MeSH Disease
Human Phenotype

Export subcorpus as...

This service is developed in the project nfdi4health task force covid-19 which is a part of nfdi4health.

nfdi4health is one of the funded consortia of the National Research Data Infrastructure programme of the DFG.