Corpus overview


MeSH Disease

Human Phenotype

Inertia (1)


There are no transmission terms in the subcorpus


There are no seroprevalence terms in the subcorpus

    displaying 1 - 1 records in total 1
    records per page

    SIR-PID: A Proportional-Integral-Derivative Controller for COVID-19 Outbreak Containment

    Authors: Nicola Rossi; Aldo Ianni

    doi:10.1101/2020.05.30.20117556 Date: 2020-06-03 Source: medRxiv

    Ongoing social restrictions, as distancing and lockdown, adopted by many countries for contrasting the COVID-19 epidemic spread, try to find a trade-off between induced economic crisis, healthcare system collapse and costs in terms of human lives. Applying and removing restrictions on a system with uncontrollable inertia HP inertia MESHD, as represented by an epidemic outbreak, may create critical instabilities, overshoots and strong oscillations of infected people MESHD around the desirable set-point, defined as the maximum number of hospitalizations acceptable by a given healthcare system. A good understanding of the system reaction to a change of the input control variable can be reasonably achieved using a proportional-integral-derivative controller, widely used in technological applications. In this paper we make use of this basic control theory for understanding the reaction of COVID-19 propagation to social restrictions and for exploiting a very known technology to reduce the epidemic damages through the correct tuning of the containment policy.

The ZB MED preprint Viewer preVIEW includes all COVID-19 related preprints from medRxiv and bioRxiv, from ChemRxiv, from ResearchSquare, from arXiv and from and is updated on a daily basis (7am CET/CEST).
The web page can also be accessed via API.



MeSH Disease
Human Phenotype

Export subcorpus as...

This service is developed in the project nfdi4health task force covid-19 which is a part of nfdi4health.

nfdi4health is one of the funded consortia of the National Research Data Infrastructure programme of the DFG.