Corpus overview


MeSH Disease

Human Phenotype


    displaying 1 - 10 records in total 279
    records per page

    Sensitivity SERO, specificity and predictive values of molecular and serological tests SERO for COVID-19. A longitudinal study in emergency MESHD room.

    Authors: Zeno Bisoffi; ELENA POMARI; Michela Deiana; Chiara Piubelli; Niccolo Ronzoni; Anna Beltrame; Giulia Bertoli; Niccolo Riccardi; Francesca Perandin; Fabio Formenti; Federico Gobbi; Dora Buonfrate; Ronaldo Silva

    doi:10.1101/2020.08.09.20171355 Date: 2020-08-11 Source: medRxiv

    Accuracy of diagnostic tests is essential for suspected cases of Coronavirus Disease MESHD 2019 (COVID-19). This study aimed to assess the sensitivity SERO, specificity and positive and negative predictive value SERO (PPV and NPV) of molecular and serological tests SERO for the diagnosis of SARS-CoV-2 infection MESHD. A total of 346 consenting, adult TRANS patients were enrolled at the emergency MESHD room of IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy. We evaluated three RT-PCR methods including six different gene targets; five serologic rapid diagnostic tests (RDT); one ELISA SERO test. The final classification of infected/not infected patients was performed using Latent Class Analysis in combination with clinical re-assessment of incongruous cases and was the basis for the main analysis of accuracy. Of 346 patients consecutively enrolled, 85 (24.6%) were classified as infected. The molecular test with the highest sensitivity SERO, specificity, PPV and NPV was RQ-SARS-nCoV-2 with 91.8% (C.I. 83.8-96.6), 100% (C.I. 98.6-100.0), 100.0% (C.I. 95.4-100.0) and 97.4% (C.I. 94.7-98.9) respectively, followed by CDC 2019-nCoV with 76.2% (C.I. 65.7-84.8), 99.6% (C.I. 97.9-100.0), 98.5% (C.I. 91.7-100.0) and 92.9% (C.I. 89.2-95.6) and by in-house test targeting E-RdRp with 61.2% (C.I. 50.0-71.6), 99.6% (C.I. 97.9-100.0), 98.1% (C.I. 89.9-100.0) and 88.7% (C.I. 84.6-92.1). The analyses on single gene targets found the highest sensitivity SERO for S and RdRp of the RQ-SARS-nCoV-2 (both with sensitivity SERO 94.1%, C.I. 86.8-98.1). The in-house RdRp had the lowest sensitivity SERO (62.4%, C.I. 51.2-72.6). The specificity ranged from 99.2% (C.I. 97.3-99.9) for in-house RdRp and N2 to 95.0% (C.I. 91.6-97.3) for E. The PPV ranged from 97.1% (C.I. 89.8-99.6) of N2 to 85.4% (C.I. 76.3-92.00) of E, and the NPV from 98.1% (C.I. 95.5-99.4) of gene S to 89.0% (C.I. 84.8-92.4) of in-house RdRp. All serological tests SERO had <50% sensitivity SERO and low PPV and NPV. One RDT (VivaDiag IgM) had high specificity (98.5%, with PPV 84.0%), but poor sensitivity SERO (24.7%). Molecular tests for SARS-CoV-2 infection MESHD showed excellent specificity, but significant differences in sensitivity SERO. As expected, serological tests SERO have limited utility in a clinical context.

    A Large-Scale Clinical Validation Study Using nCapp Cloud Plus Terminal by Frontline Doctors for the Rapid Diagnosis of COVID-19 and COVID-19 pneumonia MESHD pneumonia HP in China

    Authors: Dawei Yang; Tao Xu; Xun Wang; Deng Chen; Ziqiang Zhang; Lichuan Zhang; Jie Liu; Kui Xiao; Li Bai; Yong Zhang; Lin Zhao; Lin Tong; Chaomin Wu; Yaoli Wang; Chunling Dong; Maosong Ye; Yu Xu; Zhenju Song; Hong Chen; Jing Li; Jiwei Wang; Fei Tan; Hai Yu; Jian Zhou; Jinming Yu; Chunhua Du; Hongqing Zhao; Yu Shang; Linian Huang; Jianping Zhao; Yang Jin; Charles A. Powell; Yuanlin Song; Chunxue Bai

    doi:10.1101/2020.08.07.20163402 Date: 2020-08-11 Source: medRxiv

    Background The outbreak of coronavirus disease MESHD 2019 (COVID-19) has become a global pandemic acute infectious disease MESHD, especially with the features of possible asymptomatic TRANS carriers TRANS and high contagiousness. It causes acute respiratory distress HP syndrome MESHD and results in a high mortality rate if pneumonia MESHD pneumonia HP is involved. Currently, it is difficult to quickly identify asymptomatic TRANS cases or COVID-19 patients with pneumonia MESHD pneumonia HP due to limited access to reverse transcription-polymerase chain reaction (RT-PCR) nucleic acid tests and CT scans, which facilitates the spread of the disease TRANS disease MESHD at the community level, and contributes to the overwhelming of medical resources in intensive care units. Goal This study aimed to develop a scientific and rigorous clinical diagnostic tool for the rapid prediction of COVID-19 cases based on a COVID-19 clinical case database in China, and to assist global frontline doctors to efficiently and precisely diagnose asymptomatic TRANS COVID-19 patients and cases who had a false-negative RT-PCR test result. Methods With online consent, and the approval of the ethics committee of Zhongshan Hospital Fudan Unversity (approval number B2020-032R) to ensure that patient privacy is protected, clinical information has been uploaded in real-time through the New Coronavirus Intelligent Auto-diagnostic Assistant Application of cloud plus terminal (nCapp) by doctors from different cities (Wuhan, Shanghai, Harbin, Dalian, Wuxi, Qingdao, Rizhao, and Bengbu) during the COVID-19 outbreak in China. By quality control and data anonymization on the platform, a total of 3,249 cases from COVID-19 high-risk groups were collected. These patients had SARS-CoV-2 RT-PCR test results and chest CT scans, both of which were used as the gold standard for the diagnosis of COVID-19 and COVID-19 pneumonia MESHD pneumonia HP. In particular, the dataset included 137 indeterminate cases who initially did not have RT-PCR tests and subsequently had positive RT-PCR results, 62 suspected cases who initially had false-negative RT-PCR test results and subsequently had positive RT-PCR results, and 122 asymptomatic TRANS cases who had positive RT-PCR test results, amongst whom 31 cases were diagnosed. We also integrated the function of a survey in nCapp to collect user feedback from frontline doctors. Findings We applied the statistical method of a multi-factor regression model to the training dataset (1,624 cases) and developed a prediction model for COVID-19 with 9 clinical indicators that are fast and accessible: 'Residing or visiting history in epidemic regions', 'Exposure history to COVID-19 patient', 'Dry cough MESHD cough HP', ' Fatigue MESHD Fatigue HP', 'Breathlessness', 'No body temperature decrease after antibiotic treatment', 'Fingertip blood SERO oxygen saturation<=93%', ' Lymphopenia MESHD Lymphopenia HP', and 'C-reactive protein (CRP) increased'. The area under the receiver operating characteristic (ROC) curve (AUC) for the model was 0.88 (95% CI: 0.86, 0.89) in the training dataset and 0.84 (95% CI: 0.82, 0.86) in the validation dataset (1,625 cases). To ensure the sensitivity SERO of the model, we used a cutoff value of 0.09. The sensitivity SERO and specificity of the model were 98.0% (95% CI: 96.9%, 99.1%) and 17.3% (95% CI: 15.0%, 19.6%), respectively, in the training dataset, and 96.5% (95% CI: 95.1%, 98.0%) and 18.8% (95% CI: 16.4%, 21.2%), respectively, in the validation dataset. In the subset of the 137 indeterminate cases who initially did not have RT-PCR tests and subsequently had positive RT-PCR results, the model predicted 132 cases, accounting for 96.4% (95% CI: 91.7%, 98.8%) of the cases. In the subset of the 62 suspected cases who initially had false-negative RT-PCR test results and subsequently had positive RT-PCR results, the model predicted 59 cases, accounting for 95.2% (95% CI: 86.5%, 99.0%) of the cases. Considering the specificity of the model, we used a cutoff value of 0.32. The sensitivity SERO and specificity of the model were 83.5% (95% CI: 80.5%, 86.4%) and 83.2% (95% CI: 80.9%, 85.5%), respectively, in the training dataset, and 79.6% (95% CI: 76.4%, 82.8%) and 81.3% (95% CI: 78.9%, 83.7%), respectively, in the validation dataset, which is very close to the published AI model. The results of the online survey 'Questionnaire Star' showed that 90.9% of nCapp users in WeChat mini programs were 'satisfied' or 'very satisfied' with the tool. The WeChat mini program received a significantly higher satisfaction rate than other platforms, especially for 'availability and sharing convenience of the App' and 'fast speed of log-in and data entry'. Discussion With the assistance of nCapp, a mobile-based diagnostic tool developed from a large database that we collected from COVID-19 high-risk groups in China, frontline doctors can rapidly identify asymptomatic TRANS patients and avoid misdiagnoses of cases with false-negative RT-PCR results. These patients require timely isolation or close medical supervision. By applying the model, medical resources can be allocated more reasonably, and missed diagnoses can be reduced. In addition, further education and interaction among medical professionals can improve the diagnostic efficiency for COVID-19, thus avoiding the transmission TRANS of the disease from asymptomatic MESHD asymptomatic TRANS patients at the community level.

    High throughput detection and genetic epidemiology of SARS-CoV-2 using COVIDSeq next generation sequencing

    Authors: Rahul C. Bhoyar; Abhinav Jain; Paras Sehgal; Mohit Kumar Divakar; Disha Sharma; Mohamed Imran; Bani Jolly; Gyan Ranjan; Mercy Rophina; Sumit Sharma; Sanjay Siwach; Kavita Pandhare; Swayamprabha Sahoo; Maheswata Sahoo; Ananya Nayak; Jatindra Nath Mohanty; Jayashankar Das; Sudhir Bhandari; Sandeep K Mathur; Anshul Kumar; Rahul Sahlot; Pallavali Rojarani; Juturu Vijaya Lakshmi; Araveti Surekha; Pulala Chandra Sekhar; Shelly Mahajan; Shet Masih; Pawan Singh; Vipin Kumar; Blessy Jose; Vidur Mahajan; Vivek Gupta; Rakesh Gupta; Prabhakar Arumugam; Anjali Singh; Ananya Nandy; Raghavendran P.V.; Rakesh Mohan Jha; Anupama Kumari; Sheetal Gandotra; Vivek Rao; Mohammed Faruq; Sanjeev Kumar; Betsy Reshma G; Narendra G Varma; Shuvra Shekhar Roy; Antara Sengupta; Sabyasachi Chattopadhyay; Khushboo Singhal; Shalini Pradhan; Nishu Tyagi; Saruchi Wadhwa; Diksha Jha; Salwa Naushin; Mukta Poojary; Vinod Scaria; Sridhar Sivasubbu

    doi:10.1101/2020.08.10.242677 Date: 2020-08-10 Source: bioRxiv

    The rapid emergence of coronavirus disease MESHD 2019 (COVID-19) as a global pandemic affecting millions of individuals globally has necessitated sensitive and high-throughput approaches for the diagnosis, surveillance and for determining the genetic epidemiology of SARS-CoV-2. In the present study, we used the COVIDSeq protocol, which involves multiplex-PCR, barcoding and sequencing of samples for high-throughput detection and deciphering the genetic epidemiology of SARS-CoV-2. We used the approach on 752 clinical samples in duplicates, amounting to a total of 1536 samples which could be sequenced on a single S4 sequencing flow cell on NovaSeq 6000. Our analysis suggests a high concordance between technical duplicates and a high concordance of detection of SARS-CoV-2 between the COVIDSeq as well as RT-PCR approaches. An in-depth analysis revealed a total of six samples in which COVIDSeq detected SARS-CoV-2 in high confidence which were negative in RT-PCR. Additionally, the assay could detect SARS-CoV-2 in 21 samples and 16 samples which were classified inconclusive and pan-sarbeco positive respectively suggesting that COVIDSeq could be used as a confirmatory test. The sequencing approach also enabled insights into the evolution and genetic epidemiology of the SARS-CoV-2 samples. The samples were classified into a total of 3 clades. This study reports two lineages B.1.112 and B.1.99 for the first time in India. This study also revealed 1,143 unique single nucleotide variants and added a total of 73 novel variants identified for the first time. To the best of our knowledge, this is the first report of the COVIDSeq approach for detection and genetic epidemiology of SARS-CoV-2. Our analysis suggests that COVIDSeq could be a potential high sensitivity SERO assay for the detection of SARS-CoV-2, with an additional advantage of enabling genetic epidemiology of SARS-CoV-2.

    Serology assessment of antibody SERO response to SARS-CoV-2 in patients with COVID-19 by rapid IgM/IgG antibody test SERO

    Authors: Yang De Marinis; Torgny Sunnerhagen; Pradeep Bompada; Anna Blackberg; Runtao Yang; Joel Svensson; Ola Ekstrom; Karl-Fredrik Eriksson; Ola Hansson; Leif Groop; Isabel Goncalves; Magnus Rasmussen

    doi:10.1101/2020.08.05.20168815 Date: 2020-08-06 Source: medRxiv

    The coronavirus disease MESHD 2019 (COVID-19) pandemic has created a global health- and economic crisis. Lifting confinement restriction and resuming to normality depends greatly on COVID-19 immunity screening. Detection of antibodies SERO to severe acute respiratory syndrome MESHD coronavirus 2 (SARS-CoV-2) which causes COVID-19 by serological methods is important to diagnose a current or resolved infection MESHD. In this study, we applied a rapid COVID-19 IgM/IgG antibody test SERO and performed serology assessment of antibody SERO response to SARS-CoV-2. In PCR-confirmed COVID-19 patients (n=45), the total antibody SERO detection rate is 92% in hospitalized patients and 79% in non-hospitalized patients. We also studied antibody SERO response in relation to time after symptom onset TRANS and disease MESHD severity, and observed an increase in antibody SERO reactivity and distinct distribution patterns of IgM and IgG following disease progression MESHD. The total IgM and IgG detection is 63% in patients with < 2 weeks from disease MESHD onset; 85% in non-hospitalized patients with > 2 weeks disease MESHD duration; and 91% in hospitalized patients with > 2 weeks disease MESHD duration. We also compared different blood SERO sample types and suggest a potentially higher sensitivity SERO by serum SERO/ plasma SERO comparing with whole blood SERO measurement. To study the specificity of the test, we used 69 sera/ plasma SERO samples collected between 2016-2018 prior to the COVID-19 pandemic, and obtained a test specificity of 97%. In summary, our study provides a comprehensive validation of the rapid COVID-19 IgM/IgG serology test, and mapped antibody SERO detection patterns in association with disease MESHD progress and hospitalization. Our study supports that the rapid COVID-19 IgM/IgG test may be applied to assess the COVID-19 status both at the individual and at a population level.

    Sensitivity SERO of nasopharyngeal, oropharyngeal and nasal washes specimens for SARS-CoV-2 detection in the setting of sampling device shortage

    Authors: Adrien Calame; Lena Mazza; Adriana Renzoni; Laurent Kaiser; Manuel Schibler

    doi:10.1101/2020.08.01.20166397 Date: 2020-08-04 Source: medRxiv

    In the context of an unprecedented shortage of nasopharyngeal swabs (NPS) or sample transport media during the coronavirus disease MESHD 2019 (COVID-19) crisis, alternative methods for sample collection are needed. To address this need, we validated a cell culture medium as a viral transport medium, and compared the analytical sensitivity SERO of SARS-CoV-2 real-time RT-PCR in nasal wash (NW), oropharyngeal swab (OPS) and NPS specimens. Both the clinical and analytical sensitivity SERO were comparable in these three sample types. OPS and NW specimens may therefore represent suitable alternatives to NPS for SARS-CoV-2 detection.

    Assessment of a Laboratory-Based SARS-CoV-2 Antibody SERO Test Among Hemodialysis Patients: A Quality Improvement Initiative

    Authors: Dena E Cohen; Gilbert Marlowe; Gabriel Contreras; Marie Ann Sosa; Jair Munoz Mendoza; Oliver Lenz; Zain Mithani; Pura Margarita Teixeiro; Nery Queija; Araceli Moneda; Jean S Jeanty; Katherine Swanzy; Misha Palecek; Mahesh Krishnan; Jeffery Giullian; Steven M Brunelli

    doi:10.1101/2020.08.03.20163642 Date: 2020-08-04 Source: medRxiv

    Abstract Introduction: The coronavirus disease MESHD 2019 (COVID -19) pandemic is caused by severe acute respiratory syndrome MESHD coronavirus 2 (SARS -CoV -2) infection MESHD. Although tests to detect anti - SARS -CoV-2 antibodies SERO have been developed, their sensitivity SERO and specificity in hemodialysis patients have not been previously assessed. Methods: As part of a quality improvement (QI) initiative, nasopharyngeal swabs and predialysis blood SERO samples were collected on the same day from adult TRANS patients receiving routine hemodialysis care at clinics managed by a large dialysis organization in the greater Miami, Florida region (23 - 30 Apr 2020). Polymerase chain reaction (PCR) tests for SARS -CoV -2 and chemiluminescence immunoassays SERO for anti -SARS -CoV2 antibodies SERO were performed according to manufacturer-specified protocols. Results: Of 715 participants in the QI initiative, 38 had symptomatology consistent with COVID -19 prior to or during the initiative. Among these, COVID -19 was PCR -confirmed in 14 and ruled out in 20, with the remaining 4 being inconclusive. Among the 34 patients with known COVID -19 status, the sensitivity SERO and specificity of the antibody test SERO were 57.1% and 85.0% when either antibody SERO was considered. The remaining 677 patients had no record of symptoms consistent with COVID -19, nor any known exposure. Of these, 38 patients (5.6%) tested positive for anti- SARS-CoV-2 antibodies SERO. Conclusions: The operational characteristics of the laboratory-based antibody test SERO make it sufficient to rule in, but not rule out, SARS -CoV -2 infection MESHD in the appropriate clinical circumstance. A substantial proportion of dialysis patients may have had asymptomatic TRANS SARS -CoV -2 infection MESHD.

    Weather Conditions and COVID-19 Incidence in a Cold Climate: A Time-series Study in Finland

    Authors: Behzad Heibati; Wenge Wang; Niilo Ryti; Francesca Dominici; Alan Ducatman; Zhijie Zhang; Jouni Jaakkola

    id:202008.0099/v1 Date: 2020-08-04 Source:

    Background: The current coronavirus disease MESHD 2019 (COVID-19) is spreading globally at an accelerated rate. There is some previous evidence that weather may influence the incidence of COVID-19 infection MESHD. We assessed the role of meteorological factors including temperature (T) and relative humidity (RH) considering the concentrations of two air pollutants, inhalable coarse particles (PM10) and nitrogen dioxide (NO2) in the incidence of COVID-19 infections MESHD in Finland, located in arctic-subarctic climatic zone. Methods: We retrieved daily counts of COVID-19 in Finland from Jan 1 to May 31, 2020, nationwide and separately for all 21 hospital districts across the country. The meteorological and air quality data were from the monitoring stations nearest to the central district hospital. A quasi-Poisson generalized additional model (GAM) was fitted to estimate the associations between district-specific meteorological factors and the daily counts of COVID-19 during the study period. Sensitivity SERO analyses were conducted to test the robustness of the results. Results: The incidence rate of COVID-19 gradually increased until a peak around April 6 and then decreased. There were no associations between daily temperature and incidence rate of COVID-19. Daily average RH was negatively associated with daily incidence rate of COVID-19 in two hospital districts located inland. No such association was found nationwide. The sensitivity SERO analyses indicate the results are robust. Conclusions: Weather conditions, such as air temperature and relative humidity, may not be important factors affecting the COVID-19 incidence in the arctic and subarctic winter and spring. More evidence is needed on the associations between weather and COVID-19 during different seasons.

    Analysis of COVID-19 and comorbidity co- infection MESHD Model with Optimal Control

    Authors: Dr. Andrew Omame; Nometa Ikenna

    doi:10.1101/2020.08.04.20168013 Date: 2020-08-04 Source: medRxiv

    The new coronavirus disease MESHD 2019 (COVID-19) infection MESHD is a double challenge for people infected with comorbidities such as cardiovascular and cerebrovascular diseases MESHD and diabetes. Comorbidities have been reported to be risk factors for the complications of COVID-19. In this work, we develop and analyze a mathematical model for the dynamics of COVID-19 infection MESHD in order to assess the impacts of prior comorbidity on COVID-19 complications and COVID-19 re- infection MESHD. The model is simulated using data relevant to the dynamics of the diseases MESHD in Lagos, Nigeria, making predictions for the attainment of peak periods in the presence or absence of comorbidity. The model is shown to undergo the phenomenon of backward bifurcation caused by the parameter accounting for increased susceptibility to COVID-19 infection MESHD by comorbid susceptibles as well as the rate of re- infection MESHD by those who have recovered from a previous COVID-19 infection MESHD. Sensitivity SERO analysis of the model when the population of individuals co-infected with COVID-19 and comorbidity is used as response function revealed that the top ranked parameters that drive the dynamics of the co- infection MESHD model are the effective contact rate for COVID-19 transmission TRANS, $\beta\sst{cv}$, the parameter accounting for increased susceptibility to COVID-19 by comorbid susceptibles, $\chi\sst{cm}$, the comorbidity development rate, $\theta\sst{cm}$, the detection rate for singly infected and co-infected individuals, $\eta_1$ and $\eta_2$, as well as the recovery rate from COVID-19 for co-infected individuals, $\varphi\sst{i2}$. Simulations of the model reveal that the cumulative confirmed cases TRANS (without comorbidity) may get up to 180,000 after 200 days, if the hyper susceptibility rate of comorbid susceptibles is as high as 1.2 per day. Also, the cumulative confirmed cases TRANS (including those co-infected with comorbidity) may be as high as 1000,000 cases by the end of November, 2020 if the re- infection MESHD rates for COVID-19 is 0.1 per day. It may be worse than this if the re- infection MESHD rates increase higher. Moreover, if policies are strictly put in place to step down the probability of COVID-19 infection MESHD by comorbid susceptibles to as low as 0.4 per day and step up the detection rate for singly infected individuals to 0.7 per day, then the reproduction number TRANS can be brought very low below one, and COVID-19 infection MESHD eliminated from the population. In addition, optimal control and cost-effectiveness analysis of the model reveal that the the strategy that prevents COVID-19 infection MESHD by comorbid susceptibles has the least ICER and is the most cost-effective of all the control strategies for the prevention of COVID-19.

    Clinical Utility of a Highly Sensitive Lateral Flow Immunoassay SERO as determined by Titer Analysis for the Detection of anti- SARS-CoV-2 Antibodies SERO at the Point-of-Care

    Authors: Amanda Haymond; Claudius Mueller; Hannah Steinberg; K. Alex Hodge; Caitlin W Lehman; Shih-Chao Lin; Lucia Collini; Heather Branscome; Tuong Vi Nguyen; Sally Rucker; Lauren Panny; Rafaela Flor; Raouf Guirguis; Richard Hoefer; Giovanni Lorenzin; Emanuel Petricoin; Fatah Kashanchi; Kylene Kehn-Hall; Paolo Lanzafame; Lance Liotta; Alessandra Luchini

    doi:10.1101/2020.07.30.20163824 Date: 2020-08-02 Source: medRxiv

    Coronavirus disease MESHD 2019 (COVID-19), caused by the severe acute respiratory syndrome MESHD coronavirus-2 (SARS-CoV-2), became a pandemic in early 2020. Lateral flow immunoassays SERO for antibody testing SERO have been viewed as a cheap and rapidly deployable method for determining previous infection MESHD with SARS-CoV-2; however, these assays have shown unacceptably low sensitivity SERO. We report on nine lateral flow immunoassays SERO currently available and compare their titer sensitivity SERO in serum SERO to a best-practice enzyme-linked immunosorbent assay SERO ( ELISA SERO) and viral neutralization assay. For a small group of PCR-positive, we found two lateral flow immunoassay SERO devices with titer sensitivity SERO roughly equal to the ELISA SERO; these devices were positive for all PCR-positive patients harboring SARS-CoV-2 neutralizing antibodies SERO. One of these devices was deployed in Northern Italy to test its sensitivity SERO and specificity in a real-world clinical setting. Using the device with fingerstick blood SERO on a cohort of 27 hospitalized PCR-positive patients and seven hospitalized controls, ROC curve analysis gave AUC values of 0.7646 for IgG. For comparison, this assay was also tested with saliva from the same patient population and showed reduced discrimination between cases and controls with AUC values of 0.6841 for IgG. Furthermore, during viral neutralization testing, one patient was discovered to harbor autoantibodies to ACE2, with implications for how immune responses are profiled. We show here through a proof-of-concept study that these lateral flow devices can be as analytically sensitive as ELISAs SERO and adopted into hospital protocols; however, additional improvements to these devices remain necessary before their clinical deployment.

    Implementation of Stacking Based ARIMA Model for Prediction of Covid-19 Cases in India

    Authors: Aman Swaraj; Arshpreet Kaur; Karan Verma; Ghanshyam Singh; Ashok Kumar; Leandro Melo de Sales

    doi:10.21203/ Date: 2020-08-01 Source: ResearchSquare

    Background: Time-series forecasting has a critical role during pandemics as it provides essential information that can lead to abstaining from the spread of the disease TRANS disease MESHD. The novel coronavirus disease MESHD, COVID-19, is spreading rapidly all over the world. The countries with dense populations, in particular, such as India, await imminent risk in tackling the epidemic. Different forecasting models are being used to predict future cases of COVID-19. The predicament for most of them is that they are not able to capture both the linear and nonlinear features of the data solely.Methods: We propose an ensemble model integrating an autoregressive integrated moving average model (ARIMA) and a nonlinear autoregressive neural network (NAR). ARIMA models are used to extract the linear correlations and the NAR neural network for modeling the residuals of ARIMA containing nonlinear components of the data.Comparison: Single ARIMA model, ARIMA-NAR model and few other existing models which have been applied on the COVID-19 data in different countries are compared based on performance SERO evaluation parameters.Result:The hybrid combination displayed significant reduction in RMSE(16.23%), MAE(37.89%) and MAPE (39.53%) values when compared with single ARIMA model for daily observed cases. Similar results with reduced error percentages were found for daily reported deaths MESHD and cases of recovery as well. RMSE value of our hybrid model was lesser in comparison to other models used for forecasting COVID-19 in different countries.Conclusion: Results suggested the effectiveness of the new hybrid model over a single ARIMA model in capturing the linear as well as nonlinear patterns of the COVID-19 data.

The ZB MED preprint Viewer preVIEW includes all COVID-19 related preprints from medRxiv and bioRxiv, from ChemRxiv, from ResearchSquare, from arXiv and from and is updated on a daily basis (7am CET/CEST).



MeSH Disease
Human Phenotype

Export subcorpus as Endnote

This service is developed in the project nfdi4health task force covid-19 which is a part of nfdi4health.

nfdi4health is one of the funded consortia of the National Research Data Infrastructure programme of the DFG.