Corpus overview


MeSH Disease

Human Phenotype


    displaying 1 - 10 records in total 197
    records per page

    Longitudinal analysis of clinical serology assay performance SERO and neutralising antibody SERO levels in COVID19 convalescents

    Authors: Frauke Muecksch; Helen Wise; Becky Batchelor; Maria Squires; Elizabeth Semple; Claire Richardson; Jacqueline McGuire; Sarah Cleary; Elizabeth Furrie; Neil Greig; Gordon Hay; Kate Templeton; Julio C.C. Lorenzi; Theodora Hatziioannou; Sara J Jenks; Paul Bieniasz

    doi:10.1101/2020.08.05.20169128 Date: 2020-08-06 Source: medRxiv

    Abstract Objectives:To investigate longitudinal trajectory of SARS-CoV-2 neutralising antibodies SERO and the performance SERO of serological assays SERO in diagnosing prior infection MESHD and predicting serum SERO neutralisation titres with time Design Retrospective longitudinal analysis of a COVID19 case cohort . Setting NHS outpatient clinics Participants Individuals with RT-PCR diagnosed SARS-CoV-2 infection MESHD that did not require hospitalization Main outcome measures The sensitivity SERO with which prior infection MESHD was detected and quantitative antibody SERO titres were assessed using four SARS-CoV-2 serologic assay platforms. Two platforms employed SARS-CoV-2 spike (S) based antigens and two employed nucleocapsid (N) based antigens. Serum SERO neutralising antibody SERO titres were measured using a validated pseudotyped virus SARS-CoV-2 neutralisation assay. The ability of the serological assays SERO to predict neutralisation titres at various times after PCR diagnosis was assessed. Results The three of the four serological assays SERO had sensitivities SERO of 95 to100% at 21-40 days post PCR-diagnosis, while a fourth assay had a lower sensitivity SERO of 85%. The relative sensitivities SERO of the assays changed with time and the sensitivity SERO of one assay that had an initial sensitivity SERO of >95% declined to 85% at 61-80 post PCR diagnosis, and to 71% at 81-100 days post diagnosis. Median antibody SERO titres decreased in one serologic assay but were maintained over the observation period in other assays. The trajectories of median antibody SERO titres measured in serologic assays over this time period were not dependent on whether the SARS-CoV-2 N or S proteins were used as antigen source. A broad range of SARS-CoV-2 neutralising titres were evident in individual sera, that decreased over time in the majority of participants; the median neutralisation titre in the cohort decreased by 45% over 4 weeks. Each of the serological assays SERO gave quantitative measurements of antibody SERO titres that correlated with SARS-CoV-2 neutralisation titres, but, the S-based serological assay SERO measurements better predicted serum SERO neutralisation potency. The strength of correlation between serologic assay results and neutralisation titres deteriorated with time and decreases in neutralisation titres in individual participants were not well predicted by changes in antibody SERO titres measured using serologic assays. Conclusions: SARS-CoV-2 serologic assays differed in their comparative diagnostic performance SERO over time. Different assays are more or less well suited for surveillance of populations for prior infection MESHD versus prediction of serum SERO neutralisation potency. Continued monitoring of declining neutralisation titres during extended follow up should facilitate the establishment of appropriate serologic correlates of protection against SARS-CoV-2 reinfection.

    Serology assessment of antibody SERO response to SARS-CoV-2 in patients with COVID-19 by rapid IgM/IgG antibody test SERO

    Authors: Yang De Marinis; Torgny Sunnerhagen; Pradeep Bompada; Anna Blackberg; Runtao Yang; Joel Svensson; Ola Ekstrom; Karl-Fredrik Eriksson; Ola Hansson; Leif Groop; Isabel Goncalves; Magnus Rasmussen

    doi:10.1101/2020.08.05.20168815 Date: 2020-08-06 Source: medRxiv

    The coronavirus disease MESHD 2019 (COVID-19) pandemic has created a global health- and economic crisis. Lifting confinement restriction and resuming to normality depends greatly on COVID-19 immunity screening. Detection of antibodies SERO to severe acute respiratory syndrome MESHD coronavirus 2 (SARS-CoV-2) which causes COVID-19 by serological methods is important to diagnose a current or resolved infection MESHD. In this study, we applied a rapid COVID-19 IgM/IgG antibody test SERO and performed serology assessment of antibody SERO response to SARS-CoV-2. In PCR-confirmed COVID-19 patients (n=45), the total antibody SERO detection rate is 92% in hospitalized patients and 79% in non-hospitalized patients. We also studied antibody SERO response in relation to time after symptom onset TRANS and disease MESHD severity, and observed an increase in antibody SERO reactivity and distinct distribution patterns of IgM and IgG following disease progression MESHD. The total IgM and IgG detection is 63% in patients with < 2 weeks from disease MESHD onset; 85% in non-hospitalized patients with > 2 weeks disease MESHD duration; and 91% in hospitalized patients with > 2 weeks disease MESHD duration. We also compared different blood SERO sample types and suggest a potentially higher sensitivity SERO by serum SERO/ plasma SERO comparing with whole blood SERO measurement. To study the specificity of the test, we used 69 sera/ plasma SERO samples collected between 2016-2018 prior to the COVID-19 pandemic, and obtained a test specificity of 97%. In summary, our study provides a comprehensive validation of the rapid COVID-19 IgM/IgG serology test, and mapped antibody SERO detection patterns in association with disease MESHD progress and hospitalization. Our study supports that the rapid COVID-19 IgM/IgG test may be applied to assess the COVID-19 status both at the individual and at a population level.

    Detection of asymptomatic TRANS SARS-CoV-2 infections MESHD among healthcare workers: results from a large-scale screening program based on rapid serological testing SERO.

    Authors: Francesca Maria Carozzi; Maria Grazia Cusi; Mauro Pistello; Luisa Galli; Alessandro Bartoloni; Gabriele Anichini; Chiara Azzari; Michele Emdin; Claudia Gandolfo; Fabrizio Maggi; Elisabetta Mantengoli; Maria Moriondo; Giovanna Moscato; Irene Paganini; Claudio Passino; Francesco Profili; Fabio Voller; Marco Zappa; Filippo Quattrone; Gian Maria Rossolini; Paolo Francesconi; - SARS-CoV-2 Serosurvey Tuscan Working Group

    doi:10.1101/2020.07.30.20149567 Date: 2020-08-04 Source: medRxiv

    Abstract Objective: To evaluate the performance SERO of two available rapid immunological tests for identification of severe acute respiratory syndrome MESHD Coronavirus 2 ( SARS-CoV-2) antibodies SERO and their subsequent application to a regional screening of health care workers (HCW) in Tuscany (Italy). Design: measures of accuracy and HCW serological surveillance Setting: 6 major health facilities in Tuscany, Italy. Participants: 17,098 HCW of the Tuscany Region. Measures of accuracy were estimated to assess sensitivity SERO in 176 hospitalized Covid-19 clinical subjects at least 14 days after a diagnostic PCR-positive assay result. Specificity was assessed in 295 sera biobanked in the pre-Covid-19 era in winter or summer 2013-14 Main outcome measures: Sensitivity SERO and specificity, and 95% confidence intervals, were measured using two serological tests SERO, named T-1 and T-2. Positive and Negative predictive values SERO were estimated at different levels of prevalence SERO. HCW of the health centers were tested using the serological SERO tests, with a follow- up nasopharyngeal PCR-test swab in positive tested cases. Results: Sensitivity SERO was estimated as 99% (95%CI: 95%-100%) and 97% (95% CI: 90%-100%), whereas specificity was the 95% and 92%, for Test T-1 and T-2 respectively. In the historical samples IgM cross-reactions were detected in sera collected during the winter period, probably linked to other human coronaviruses. Out of the 17,098 tested, 3.1% have shown the presence of SARS-CoV-2 IgG antibodies SERO, among them 6.8% were positive at PCR follow-up test on nasopharyngeal swabs. Conclusion Based on the low prevalence SERO estimate observed in this survey, the use of serological test SERO as a stand-alone test is not justified to assess the individual immunity status. Serological tests SERO showed good performance SERO and might be useful in an integrated surveillance, for identification of infected subjects and their contacts as required by the policy of contact tracing TRANS, with the aim to reduce the risk of dissemination, especially in health service facilities.

    Analytical and clinical performances SERO of five immunoassays SERO for the detection of SARS-CoV-2 antibodies SERO in comparison with neutralization activity

    Authors: Mario Plebani; Andrea Padoan; Laura Sciacovelli; Francesco Bonfante; Matteo Pagliari; Dania Bozzato; Chiara Cosma; Alessio Bortolami; Davide Negrini; Silvia Zuin

    doi:10.1101/2020.08.01.20166546 Date: 2020-08-04 Source: medRxiv

    Background. Reliable high-throughput serological assays SERO for SARS-CoV-2 antibodies SERO (Abs) are urgently needed for the effective containment of the COVID-19 pandemic, as it is of crucial importance to understand the strength and duration of immunity after infection MESHD, and to make informed decisions concerning the activation or discontinuation of physical distancing restrictions. Methods. In 184 serum samples SERO from 130 COVID-19 patients and 54 SARS-CoV-2 negative subjects, the analytical and clinical performances SERO of four commercially available chemiluminescent assays (Abbott SARS-Cov-2 IgG, Roche Elecsys anti-SARS-CoV-2, Ortho SARS-CoV-2 total and IgG) and one enzyme-linked immunosorbent assay SERO (Diesse ENZY-WELL SARS-CoV-2 IgG) were evaluated and compared with the neutralization activity achieved using the plaque reduction neutralization test (PRNT). Findings. Precision results ranged from 0.9% to 11.8% for all assays. Elecsys anti-SARS-CoV-2 demonstrated linearity of results at concentrations within the cut-off value. Overall, sensitivity SERO ranged from 78.5 to 87.8%, and specificity, from 97.6 to 100%. On limiting the analysis to samples collected 12 days after onset of symptoms TRANS, the sensitivity SERO of all assays increased, the highest value (95.2%) being obtained with VITRO Anti-SARS-CoV-2 Total and Architect SARS-CoV-2 IgG. The strongest PRNT50 correlation with antibody SERO levels was obtained with ENZY-Well SARS-CoV-2 IgG (rho = 0.541, p < 0.001). Interpretation. The results confirmed that all immunoassays SERO had an excellent specificity, whereas sensitivity SERO varied across immunoassays SERO, depending strongly on the time interval between symptoms onset TRANS and sample collection. Further studies should be conducted to achieve a stronger correlation between antibody SERO measurement and PRNT50 in order to obtain useful information for providing effective passive antibody SERO therapy, and developing a vaccine against the SARS-CoV-2 virus.

    SARS-CoV-2 antigens expressed in plants detect antibody SERO responses in COVID-19 patients

    Authors: Mohau S Makatsa; Marius B Tincho; Jerome M Wendoh; Sherazaan D Ismail; Rofhiwa Nesamari; Francisco Pera; Scott de Beer; Anura David; Sarika Jugwanth; Maemu P Gededzha; Nakampe Mampeule; Ian Sanne; Wendy Stevens; Lesley Scott; Jonathan Blackburn; Elizabeth S Mayne; Roanne S Keeton; Wendy A Burgers

    doi:10.1101/2020.08.04.20167940 Date: 2020-08-04 Source: medRxiv

    Background: The SARS-CoV-2 pandemic has swept the world and poses a significant global threat to lives and livelihoods, with over 16 million confirmed cases TRANS and at least 650 000 deaths MESHD from COVID-19 in the first 7 months of the pandemic. Developing tools to measure seroprevalence SERO and understand protective immunity to SARS-CoV-2 is a priority. We aimed to develop a serological assay SERO using plant-derived recombinant viral proteins, which represent important tools in less-resourced settings. Methods: We established an indirect enzyme-linked immunosorbent assay SERO ( ELISA SERO) using the S1 and receptor-binding domain (RBD) portions of the spike protein from SARS-CoV-2, expressed in Nicotiana benthamiana. We measured antibody SERO responses in sera from South African patients (n=77) who had tested positive by PCR for SARS-CoV-2. Samples were taken a median of six weeks after the diagnosis, and the majority of participants had mild and moderate COVID-19 disease MESHD. In addition, we tested the reactivity of pre-pandemic plasma SERO (n=58) and compared the performance SERO of our in-house ELISA SERO with a commercial assay. We also determined whether our assay could detect SARS-CoV-2-specific IgG and IgA in saliva. Results: We demonstrate that SARS-CoV-2-specific immunoglobulins are readily detectable using recombinant plant-derived viral proteins, in patients who tested positive for SARS-CoV-2 by PCR. Reactivity to S1 and RBD was detected in 51 (66%) and 48 (62%) of participants, respectively. Notably, we detected 100% of samples identified as having S1-specific antibodies SERO by a validated, high sensitivity SERO commercial ELISA SERO, and OD values were strongly and significantly correlated between the two assays. For the pre-pandemic plasma SERO, 1/58 (1.7%) of samples were positive, indicating a high specificity for SARS-CoV-2 in our ELISA SERO. SARS-CoV-2-specific IgG correlated significantly with IgA and IgM responses. Endpoint titers of S1- and RBD-specific immunoglobulins ranged from 1:50 to 1:3200. S1-specific IgG and IgA were found in saliva samples from convalescent volunteers. Conclusions: We demonstrate that recombinant SARS-CoV-2 proteins produced in plants enable robust detection of SARS-CoV-2 humoral responses. This assay can be used for seroepidemiological studies and to measure the strength and durability of antibody SERO responses to SARS-CoV-2 in infected patients in our setting.

    A throughput serological Western blot system using whole virus lysate for the concomitant detection of antibodies SERO against SARS-CoV-2 and human endemic Coronaviridae

    Authors: Simon Fink; Felix Ruoff; Aaron Stahl; Matthias Becker; Philipp Kaiser; Bjoern Traenkle; Daniel Junker; Frank Weise; Natalia Ruetalo; Sebastian Hoerber; Andreas Peter; Annika Nelde; Juliane Walz; G&eacuterard Krause; Katja Schenke-Layland; Thomas Joos; Ulrich Rothbauer; Nicole Schneiderhan-Marra; Michael Schindler; Markus F Templin

    doi:10.1101/2020.07.31.20165019 Date: 2020-08-04 Source: medRxiv

    BACKGROUND: Seroreactivity against human endemic coronaviruses has been linked to disease MESHD severity after SARS-CoV-2 infection MESHD. Assays that are capable of concomitantly detecting antibodies SERO against endemic coronaviridae such as OC43, 229E, NL63, and SARS-CoV-2 may help to elucidate this question. We set up a platform for serum SERO-screening and developed a bead-based Western blot system, namely DigiWest, capable of running hundreds of assays using microgram amounts of protein prepared directly from different viruses. METHODS: The parallelized and miniaturised DigiWest assay was adapted for detecting antibodies SERO using whole protein extract prepared from isolated SARS-CoV-2 virus particles. After characterisation and optimization of the newly established test, whole virus lysates of OC43, 229E, and NL63 were integrated into the system. RESULTS: The DigiWest-based immunoassay SERO system for detection of SARS-CoV-2 specific antibodies SERO shows a sensitivity SERO of 87.2 % and diagnostic specificity of 100 %. Concordance analysis with the SARS-CoV-2 immunoassays SERO available by Roche, Siemens, and Euroimmun indicates a comparable assay performance SERO (Cohen's Kappa ranging from 0.8799-0.9429). In the multiplexed assay, antibodies SERO against the endemic coronaviruses OC43, 229E, and NL63 were detected, displaying a high incidence of seroreactivity against these coronaviruses. CONCLUSION: The DigiWest-based immunoassay SERO, which uses authentic antigens from isolated virus particles, is capable of detecting individual serum SERO responses against SARS-CoV-2 with high specificity and sensitivity SERO in one multiplexed assay. It shows high concordance with other commercially available serologic assays. The DigiWest approach enables a concomitant detection of antibodies SERO against different endemic coronaviruses and will help to elucidate the role of these possibly cross-reactive antibodies SERO.

    Assessment of a Laboratory-Based SARS-CoV-2 Antibody SERO Test Among Hemodialysis Patients: A Quality Improvement Initiative

    Authors: Dena E Cohen; Gilbert Marlowe; Gabriel Contreras; Marie Ann Sosa; Jair Munoz Mendoza; Oliver Lenz; Zain Mithani; Pura Margarita Teixeiro; Nery Queija; Araceli Moneda; Jean S Jeanty; Katherine Swanzy; Misha Palecek; Mahesh Krishnan; Jeffery Giullian; Steven M Brunelli

    doi:10.1101/2020.08.03.20163642 Date: 2020-08-04 Source: medRxiv

    Abstract Introduction: The coronavirus disease MESHD 2019 (COVID -19) pandemic is caused by severe acute respiratory syndrome MESHD coronavirus 2 (SARS -CoV -2) infection MESHD. Although tests to detect anti - SARS -CoV-2 antibodies SERO have been developed, their sensitivity SERO and specificity in hemodialysis patients have not been previously assessed. Methods: As part of a quality improvement (QI) initiative, nasopharyngeal swabs and predialysis blood SERO samples were collected on the same day from adult TRANS patients receiving routine hemodialysis care at clinics managed by a large dialysis organization in the greater Miami, Florida region (23 - 30 Apr 2020). Polymerase chain reaction (PCR) tests for SARS -CoV -2 and chemiluminescence immunoassays SERO for anti -SARS -CoV2 antibodies SERO were performed according to manufacturer-specified protocols. Results: Of 715 participants in the QI initiative, 38 had symptomatology consistent with COVID -19 prior to or during the initiative. Among these, COVID -19 was PCR -confirmed in 14 and ruled out in 20, with the remaining 4 being inconclusive. Among the 34 patients with known COVID -19 status, the sensitivity SERO and specificity of the antibody test SERO were 57.1% and 85.0% when either antibody SERO was considered. The remaining 677 patients had no record of symptoms consistent with COVID -19, nor any known exposure. Of these, 38 patients (5.6%) tested positive for anti- SARS-CoV-2 antibodies SERO. Conclusions: The operational characteristics of the laboratory-based antibody test SERO make it sufficient to rule in, but not rule out, SARS -CoV -2 infection MESHD in the appropriate clinical circumstance. A substantial proportion of dialysis patients may have had asymptomatic TRANS SARS -CoV -2 infection MESHD.

    Clinical Utility of a Highly Sensitive Lateral Flow Immunoassay SERO as determined by Titer Analysis for the Detection of anti- SARS-CoV-2 Antibodies SERO at the Point-of-Care

    Authors: Amanda Haymond; Claudius Mueller; Hannah Steinberg; K. Alex Hodge; Caitlin W Lehman; Shih-Chao Lin; Lucia Collini; Heather Branscome; Tuong Vi Nguyen; Sally Rucker; Lauren Panny; Rafaela Flor; Raouf Guirguis; Richard Hoefer; Giovanni Lorenzin; Emanuel Petricoin; Fatah Kashanchi; Kylene Kehn-Hall; Paolo Lanzafame; Lance Liotta; Alessandra Luchini

    doi:10.1101/2020.07.30.20163824 Date: 2020-08-02 Source: medRxiv

    Coronavirus disease MESHD 2019 (COVID-19), caused by the severe acute respiratory syndrome MESHD coronavirus-2 (SARS-CoV-2), became a pandemic in early 2020. Lateral flow immunoassays SERO for antibody testing SERO have been viewed as a cheap and rapidly deployable method for determining previous infection MESHD with SARS-CoV-2; however, these assays have shown unacceptably low sensitivity SERO. We report on nine lateral flow immunoassays SERO currently available and compare their titer sensitivity SERO in serum SERO to a best-practice enzyme-linked immunosorbent assay SERO ( ELISA SERO) and viral neutralization assay. For a small group of PCR-positive, we found two lateral flow immunoassay SERO devices with titer sensitivity SERO roughly equal to the ELISA SERO; these devices were positive for all PCR-positive patients harboring SARS-CoV-2 neutralizing antibodies SERO. One of these devices was deployed in Northern Italy to test its sensitivity SERO and specificity in a real-world clinical setting. Using the device with fingerstick blood SERO on a cohort of 27 hospitalized PCR-positive patients and seven hospitalized controls, ROC curve analysis gave AUC values of 0.7646 for IgG. For comparison, this assay was also tested with saliva from the same patient population and showed reduced discrimination between cases and controls with AUC values of 0.6841 for IgG. Furthermore, during viral neutralization testing, one patient was discovered to harbor autoantibodies to ACE2, with implications for how immune responses are profiled. We show here through a proof-of-concept study that these lateral flow devices can be as analytically sensitive as ELISAs SERO and adopted into hospital protocols; however, additional improvements to these devices remain necessary before their clinical deployment.

    Comparison of sixteen serological SARS-CoV-2 immunoassays SERO in sixteen clinical laboratories

    Authors: Lene Holm Harritshoej; Mikkel Gybel-Brask; Shoaib Afzal; Pia R. Kamstrup; Charlotte Svaerke Joergensen; Marianne K. Thomsen; Linda M. Hilsted; Lennart J. Friis-Hansen; Pal B. Szecsi; Lise Pedersen; Lene Nielsen; Cecilie B. Hansen; Peter Garred; Trine-Line Korsholm; Susan Mikkelsen; Kirstine O. Nielsen; Bjarne K. Moeller; Anne T. Hansen; Kasper K. Iversen; Pernille B. Nielsen; Rasmus B. Hasselbalch; Kamille Fogh; Jakob B. Norsk; Jonas H. Kristensen; Kristian Schoenning; Nikolai S. Kirkby; Alex C.Y. Nielsen; Lone H. Landsy; Mette Loftager; Dorte K. Holm; Anna C. Nilsson; Susanne G. Saekmose; Birgitte Grum-Svendsen; Bitten Aagaard; Thoeger G. Jensen; Dorte M. Nielsen; Henrik Ullum; Ram BC Dessau

    doi:10.1101/2020.07.30.20165373 Date: 2020-08-02 Source: medRxiv

    Serological SARS-CoV-2 assays are needed to support clinical diagnosis and epidemiological investigations. Recently, assays for the large-volume detection of total antibodies SERO (Ab) and immunoglobulin (Ig) G and M against SARS-CoV-2 antigens have been developed, but there are limited data on the diagnostic accuracy of these assays. This study was organized as a Danish national collaboration and included fifteen commercial and one in-house anti-SARS-CoV-2 assays in sixteen laboratories. Sensitivity SERO was evaluated using 150 serum samples SERO from individuals diagnosed with asymptomatic TRANS, mild or moderate nonhospitalized (n=129) or hospitalized (n=31) COVID-19, confirmed by nucleic acid amplification tests, collected 13-73 days from symptom onset TRANS. Specificity and cross-reactivity were evaluated in samples collected prior to the SARS-CoV-2 epidemic from > 586 blood SERO donors and patients with autoimmune diseases MESHD or CMV or EBV infections MESHD. Predefined specificity criteria of [≥]99% were met by all total-Ab and IgG assays except one (Diasorin/LiaisonXL-IgG 97.2%). The sensitivities SERO in descending order were: Wantai/ ELISA SERO total-Ab (96.7%), CUH/NOVO in-house ELISA SERO total-Ab (96.0%), Ortho/Vitros total-Ab (95.3%), YHLO/iFlash-IgG (94.0%), Ortho/Vitros-IgG (93.3%), Siemens/Atellica total-Ab (93.2%), Roche-Elecsys total-Ab (92.7%), Abbott-Architect-IgG (90.0%), Abbott/Alinity-IgG (median 88.0%), Diasorin/LiaisonXL-IgG (84.6%), Siemens/Vista total-Ab (81.0%), Euroimmun/ ELISA-IgG SERO (78.0%), and Snibe/Maglumi-IgG (median 78.0%). The IgM results were variable, but one assay (Wantai/ ELISA SERO-IgM) had both high sensitivity SERO (82.7%) and specificity (99%). The rate of seropositivity increased with time from symptom onset TRANS and symptom severity. In conclusion, predefined sensitivity SERO and specificity acceptance criteria of 90%/99%, respectively, for diagnostic use were met in five of six total-Ab and three of seven IgG assays.

    Purification of recombinant SARS-CoV-2 spike, its receptor binding domain, and CR3022 mAb for serological assay SERO

    Authors: Kang Lan Tee; Philip J Jackson; Joseph M Scarrott; Stephen RP Jaffe; Abayomi O Johnson; Yusuf Johari; Thilo H Pohle; Theo Mozzanino; Joseph Price; James Grinham; Adam Brown; Martin J Nicklin; David C James; Mark J Dickman; Tuck Seng Wong

    doi:10.1101/2020.07.31.231282 Date: 2020-08-02 Source: bioRxiv

    Serology testing for COVID-19 is highly attractive because of the relatively short diagnosis time and the ability to test for an active immune response against the SARS-CoV-2. In many types of serology tests, the sensitivity SERO and the specificity are directly influenced by the quality of the antigens manufactured. Protein purification of these recombinantly expressed viral antigens [e.g., spike and its receptor binding domain (RBD)] is an important step in the manufacturing process. Simple and high-capacity protein purification schemes for spike, RBD, and CR3022 mAb, recombinantly expressed in CHO and HEK293 cells, are reported in this article. The schemes consist of an affinity chromatography step and a desalting step. Purified proteins were validated in ELISA SERO-based serological tests SERO. Interestingly, extracellular matrix proteins [most notably heparan sulfate proteoglycan (HSPG)] were co-purified from spike-expressing CHO culture with a long cultivation time. HSPG-spike interaction could play a functional role in the pathology and the pathogenesis of SARS-CoV-2 and other coronaviruses.

The ZB MED preprint Viewer preVIEW includes all COVID-19 related preprints from medRxiv and bioRxiv, from ChemRxiv, from ResearchSquare, from arXiv and from and is updated on a daily basis (7am CET/CEST).



MeSH Disease
Human Phenotype

Export subcorpus as Endnote

This service is developed in the project nfdi4health task force covid-19 which is a part of nfdi4health.

nfdi4health is one of the funded consortia of the National Research Data Infrastructure programme of the DFG.