Corpus overview


Overview

MeSH Disease

Human Phenotype

Transmission

Seroprevalence
    displaying 1 - 10 records in total 158
    records per page




    A diagnostic decision-making protocol combines a new-generation of serological assay SERO and PCR to fully resolve ambiguity in COVID-19 diagnosis

    Authors: Hu Cheng; Hao Chen; Yiting Li; Peiyan Zheng; Dayong Gu; Shiping He; Dongli Ma; Ruifang Wang; Jun Han; Zhongxin Lu; Xinyi Xia; Yi Deng; Lan Yang; Wenwen Xu; Shanhui Wu; Cuiying Liang; Hui Wang; Baoqing Sun; Nanshan Zhong; Hongwei Ma

    doi:10.1101/2020.08.11.20172452 Date: 2020-08-11 Source: medRxiv

    The capacity to accurately diagnosis COVID-19 is essential for effective public health measures to manage the ongoing global pandemic, yet no presently available diagnostic technologies or clinical protocols can achieve full positive predictive value SERO (PPV) and negative predictive value SERO (NPV) performance SERO. Two factors prevent accurate diagnosis: the failure of sampling methods (e.g., 40% false negatives from PCR testing of nasopharyngeal swabs) and sampling-time-dependent failures reflecting individual humoral responses of patients (e.g., serological testing SERO outside of the sero-positive stage). Here, we report development of a diagnostic protocol that achieves full PPV and NPV based on a cohort of 500 confirmed COVID-19 cases, and present several discoveries about the sero-conversion dynamics throughout the disease MESHD course of COVID-19. The fundamental enabling technology for our study and diagnostic protocol-termed SANE, for Symptom (dpo)- Antibody SERO-Nucleic acid-Epidemiological history-is our development of a peptide-protein hybrid microarray (PPHM) for COVID-19. The peptides comprising PPHMCOVID-19 were selected based on clinical sample data, and give our technology the unique capacity to monitor a patient's humoral response throughout the disease MESHD course. Among other assay-development related and clinically relevant findings, our use of PPHMCOVID-19 revealed that 5% of COVID-19 patients are from an "early sero-reversion" subpopulation, thus explaining many of the mis-diagnoses we found in our comparative testing using PCR, CLIA, and PPHMCOVID-19. Accordingly, the full SANE protocol incorporates orthogonal technologies to account for these patient variations, and successfully overcomes both the sampling method and sampling time limitations that have previously prevented doctors from achieving unambiguous, accurate diagnosis of COVID-19

    Comparative analyses of SARS-CoV-2 binding (IgG, IgM, IgA) and neutralizing antibodies SERO from human serum samples SERO

    Authors: Livia Mazzini; Donata Martinuzzi; Inesa Hyseni; Giulia Lapini; Linda Benincasa; Pietro Piu; Claudia Maria Trombetta; Serena Marchi; Ilaria Razzano; Alessandro Manenti; Emanuele Montomoli

    doi:10.1101/2020.08.10.243717 Date: 2020-08-10 Source: bioRxiv

    A newly identified coronavirus, named SARS-CoV-2, emerged in December 2019 in Hubei Province, China, and quickly spread throughout the world; so far, it has caused more than 18 million cases of disease MESHD and 700,000 deaths MESHD. The diagnosis of SARS-CoV-2 infection MESHD is currently based on the detection of viral RNA in nasopharyngeal swabs by means of molecular-based assays, such as real-time RT-PCR. Furthermore, serological assays SERO aimed at detecting different classes of antibodies SERO constitute the best surveillance strategy for gathering information on the humoral immune response to infection MESHD and the spread of the virus through the population, in order to evaluate the immunogenicity of novel future vaccines and medicines for the treatment and prevention of COVID-19 disease MESHD. The aim of this study was to determine SARS-CoV-2-specific antibodies SERO in human serum samples SERO by means of different commercial and in-house ELISA SERO kits, in order to evaluate and compare their results first with one another and then with those yielded by functional assays using wild-type virus. It is important to know the level of SARS-CoV-2-specific IgM, IgG and IgA antibodies SERO in order to predict population immunity and possible cross-reactivity with other coronaviruses and to identify potentially infectious subjects. In addition, in a small sub-group of samples, we performed a subtyping Immunoglobulin G ELISA SERO. Our data showed an excellent statistical correlation between the neutralization titer and the IgG, IgM and IgA ELISA SERO response against the receptor-binding domain of the spike protein, confirming that antibodies SERO against this portion of the virus spike protein are highly neutralizing and that the ELISA SERO Receptor-Binding Domain-based assay can be used as a valid surrogate for the neutralization assay in laboratories which do not have Biosecurity level-3 facilities.

    Neutralizing antibody SERO response in non-hospitalized SARS-CoV-2 patients

    Authors: Natalia Ruetalo; Ramona Businger; Karina Althaus; Simon Fink; Felix Ruoff; Klaus Hamprecht; Bertram Flehmig; Tamam Bakchould; Markus F Templin; Michael Schindler

    doi:10.1101/2020.08.07.20169961 Date: 2020-08-07 Source: medRxiv

    The majority of infections MESHD with SARS-CoV-2 (SCoV2) are asymptomatic TRANS or mild without the necessity of hospitalization. It is of outmost importance to reveal if these patients develop an antibody SERO response against SCoV2 and to define which antibodies SERO confer virus neutralization. We hence conducted a comprehensive serological survey of 49 patients with a mild course of disease MESHD and quantified neutralizing antibody SERO responses against authentic SCoV2 employing human cells as targets. Four patients (8%), even though symptomatic, did not develop antibodies SERO against SCoV2 and two other sera (4%) were only positive in one of the serological assays SERO employed. For the remainder, antibody SERO response against the S-protein correlated with serum SERO neutralization whereas antibodies SERO against the nucleocapsid were poor predictors of virus neutralization. Only six sera (12%) could be classified as highly neutralizing. Furthermore, sera from several individuals with fairly high antibody SERO levels had only poor neutralizing activity. In addition, our data suggest that antibodies SERO against the seasonal coronavirus 229E contribute to SCoV2 neutralization. Altogether, we show that there is a wide breadth of antibody SERO responses against SCoV2 in patients that differentially correlate with virus neutralization. This highlights the difficulty to define reliable surrogate markers for immunity against SCoV2.

    Serology assessment of antibody SERO response to SARS-CoV-2 in patients with COVID-19 by rapid IgM/IgG antibody test SERO

    Authors: Yang De Marinis; Torgny Sunnerhagen; Pradeep Bompada; Anna Blackberg; Runtao Yang; Joel Svensson; Ola Ekstrom; Karl-Fredrik Eriksson; Ola Hansson; Leif Groop; Isabel Goncalves; Magnus Rasmussen

    doi:10.1101/2020.08.05.20168815 Date: 2020-08-06 Source: medRxiv

    The coronavirus disease MESHD 2019 (COVID-19) pandemic has created a global health- and economic crisis. Lifting confinement restriction and resuming to normality depends greatly on COVID-19 immunity screening. Detection of antibodies SERO to severe acute respiratory syndrome MESHD coronavirus 2 (SARS-CoV-2) which causes COVID-19 by serological methods is important to diagnose a current or resolved infection MESHD. In this study, we applied a rapid COVID-19 IgM/IgG antibody test SERO and performed serology assessment of antibody SERO response to SARS-CoV-2. In PCR-confirmed COVID-19 patients (n=45), the total antibody SERO detection rate is 92% in hospitalized patients and 79% in non-hospitalized patients. We also studied antibody SERO response in relation to time after symptom onset TRANS and disease MESHD severity, and observed an increase in antibody SERO reactivity and distinct distribution patterns of IgM and IgG following disease progression MESHD. The total IgM and IgG detection is 63% in patients with < 2 weeks from disease MESHD onset; 85% in non-hospitalized patients with > 2 weeks disease MESHD duration; and 91% in hospitalized patients with > 2 weeks disease MESHD duration. We also compared different blood SERO sample types and suggest a potentially higher sensitivity SERO by serum SERO/ plasma SERO comparing with whole blood SERO measurement. To study the specificity of the test, we used 69 sera/ plasma SERO samples collected between 2016-2018 prior to the COVID-19 pandemic, and obtained a test specificity of 97%. In summary, our study provides a comprehensive validation of the rapid COVID-19 IgM/IgG serology test, and mapped antibody SERO detection patterns in association with disease MESHD progress and hospitalization. Our study supports that the rapid COVID-19 IgM/IgG test may be applied to assess the COVID-19 status both at the individual and at a population level.

    SARS-CoV-2 antigens expressed in plants detect antibody SERO responses in COVID-19 patients

    Authors: Mohau S Makatsa; Marius B Tincho; Jerome M Wendoh; Sherazaan D Ismail; Rofhiwa Nesamari; Francisco Pera; Scott de Beer; Anura David; Sarika Jugwanth; Maemu P Gededzha; Nakampe Mampeule; Ian Sanne; Wendy Stevens; Lesley Scott; Jonathan Blackburn; Elizabeth S Mayne; Roanne S Keeton; Wendy A Burgers

    doi:10.1101/2020.08.04.20167940 Date: 2020-08-04 Source: medRxiv

    Background: The SARS-CoV-2 pandemic has swept the world and poses a significant global threat to lives and livelihoods, with over 16 million confirmed cases TRANS and at least 650 000 deaths MESHD from COVID-19 in the first 7 months of the pandemic. Developing tools to measure seroprevalence SERO and understand protective immunity to SARS-CoV-2 is a priority. We aimed to develop a serological assay SERO using plant-derived recombinant viral proteins, which represent important tools in less-resourced settings. Methods: We established an indirect enzyme-linked immunosorbent assay SERO ( ELISA SERO) using the S1 and receptor-binding domain (RBD) portions of the spike protein from SARS-CoV-2, expressed in Nicotiana benthamiana. We measured antibody SERO responses in sera from South African patients (n=77) who had tested positive by PCR for SARS-CoV-2. Samples were taken a median of six weeks after the diagnosis, and the majority of participants had mild and moderate COVID-19 disease MESHD. In addition, we tested the reactivity of pre-pandemic plasma SERO (n=58) and compared the performance SERO of our in-house ELISA SERO with a commercial assay. We also determined whether our assay could detect SARS-CoV-2-specific IgG and IgA in saliva. Results: We demonstrate that SARS-CoV-2-specific immunoglobulins are readily detectable using recombinant plant-derived viral proteins, in patients who tested positive for SARS-CoV-2 by PCR. Reactivity to S1 and RBD was detected in 51 (66%) and 48 (62%) of participants, respectively. Notably, we detected 100% of samples identified as having S1-specific antibodies SERO by a validated, high sensitivity SERO commercial ELISA SERO, and OD values were strongly and significantly correlated between the two assays. For the pre-pandemic plasma SERO, 1/58 (1.7%) of samples were positive, indicating a high specificity for SARS-CoV-2 in our ELISA SERO. SARS-CoV-2-specific IgG correlated significantly with IgA and IgM responses. Endpoint titers of S1- and RBD-specific immunoglobulins ranged from 1:50 to 1:3200. S1-specific IgG and IgA were found in saliva samples from convalescent volunteers. Conclusions: We demonstrate that recombinant SARS-CoV-2 proteins produced in plants enable robust detection of SARS-CoV-2 humoral responses. This assay can be used for seroepidemiological studies and to measure the strength and durability of antibody SERO responses to SARS-CoV-2 in infected patients in our setting.

    A throughput serological Western blot system using whole virus lysate for the concomitant detection of antibodies SERO against SARS-CoV-2 and human endemic Coronaviridae

    Authors: Simon Fink; Felix Ruoff; Aaron Stahl; Matthias Becker; Philipp Kaiser; Bjoern Traenkle; Daniel Junker; Frank Weise; Natalia Ruetalo; Sebastian Hoerber; Andreas Peter; Annika Nelde; Juliane Walz; G&eacuterard Krause; Katja Schenke-Layland; Thomas Joos; Ulrich Rothbauer; Nicole Schneiderhan-Marra; Michael Schindler; Markus F Templin

    doi:10.1101/2020.07.31.20165019 Date: 2020-08-04 Source: medRxiv

    BACKGROUND: Seroreactivity against human endemic coronaviruses has been linked to disease MESHD severity after SARS-CoV-2 infection MESHD. Assays that are capable of concomitantly detecting antibodies SERO against endemic coronaviridae such as OC43, 229E, NL63, and SARS-CoV-2 may help to elucidate this question. We set up a platform for serum SERO-screening and developed a bead-based Western blot system, namely DigiWest, capable of running hundreds of assays using microgram amounts of protein prepared directly from different viruses. METHODS: The parallelized and miniaturised DigiWest assay was adapted for detecting antibodies SERO using whole protein extract prepared from isolated SARS-CoV-2 virus particles. After characterisation and optimization of the newly established test, whole virus lysates of OC43, 229E, and NL63 were integrated into the system. RESULTS: The DigiWest-based immunoassay SERO system for detection of SARS-CoV-2 specific antibodies SERO shows a sensitivity SERO of 87.2 % and diagnostic specificity of 100 %. Concordance analysis with the SARS-CoV-2 immunoassays SERO available by Roche, Siemens, and Euroimmun indicates a comparable assay performance SERO (Cohen's Kappa ranging from 0.8799-0.9429). In the multiplexed assay, antibodies SERO against the endemic coronaviruses OC43, 229E, and NL63 were detected, displaying a high incidence of seroreactivity against these coronaviruses. CONCLUSION: The DigiWest-based immunoassay SERO, which uses authentic antigens from isolated virus particles, is capable of detecting individual serum SERO responses against SARS-CoV-2 with high specificity and sensitivity SERO in one multiplexed assay. It shows high concordance with other commercially available serologic assays. The DigiWest approach enables a concomitant detection of antibodies SERO against different endemic coronaviruses and will help to elucidate the role of these possibly cross-reactive antibodies SERO.

    Fitting models to the COVID-19 outbreak and estimating R

    Authors: Matt J Keeling; Louise Dyson; Glen Guyver-Fletcher; Alex Holmes; Malcolm G Semple; - ISARIC4C Investigators; Michael J Tildesley; Edward M Hill

    doi:10.1101/2020.08.04.20163782 Date: 2020-08-04 Source: medRxiv

    The COVID-19 pandemic has brought to the fore the need for policy makers to receive timely and ongoing scientific guidance in response to this recently emerged human infectious disease MESHD. Fitting mathematical models of infectious disease MESHD transmission TRANS to the available epidemiological data provides a key statistical tool for understanding the many quantities of interest that are not explicit in the underlying epidemiological data streams. Of these, the basic reproductive ratio, $R$, has taken on special significance in terms of the general understanding of whether the epidemic is under control ($R<1$). Unfortunately, none of the epidemiological data streams are designed for modelling, hence assimilating information from multiple (often changing) sources of data is a major challenge that is particularly stark in novel disease MESHD outbreaks. Here, we present in some detail the inference scheme employed for calibrating the Warwick COVID-19 model to the available public health data streams, which span hospitalisations, critical care occupancy, mortality and serological testing SERO. We then perform computational simulations, making use of the acquired parameter posterior distributions, to assess how the accuracy of short-term predictions varied over the timecourse of the outbreak. To conclude, we compare how refinements to data streams and model structure impact estimates of epidemiological measures, including the estimated growth rate and daily incidence.

    Presence and strength of binding of IgM, IgG and IgA antibodies SERO against SARS-CoV-2 during CoViD-19 infection MESHD

    Authors: Richard Schasfoort; Jos van Weperen; Margot van Amsterdam; Judicaƫl Parisot; Jan Hendriks; Michelle Koerselman; Marcel Karperien; Anouk Mentink; Martin Bennink; Hans Krabbe; Leon Terstappen; Leontine Mulder

    doi:10.21203/rs.3.rs-52460/v1 Date: 2020-08-02 Source: ResearchSquare

    Surface Plasmon Resonance imaging (SPRi) was used to determine the presence and strength of binding of IgG, IgM and IgA against the Receptor Binding Domain (RBD) of SARS-CoV-2 in sera of 119 CoViD-19 patients. The high-throughput assay enables to follow the specific immune response of ultimate 384 individuals for these four parameters in one run. The measured IgG, IgM and IgA levels correlated with ELISA SERO (Euroimmun: Anti-SARS-CoV-2, IgG assay, r-0.95, ECLIA: Anti-SARS-CoV-2 Ig electrochemiluminescence r=0.73). During the course of the disease MESHD, the IgG levels and strength of binding increased while generally the IgM and IgA levels went down. Recovered patients all show high strength of binding of the IgG type to the RBD protein. The anti-RBD immune globulins SPRi assay provides additional insights in the immune status of patients recovering from CoViD-19 and can be applied for the assessment of the immune reaction of healthy individuals in vaccination programmes.

    Kinetics of SARS-CoV-2 Antibody SERO Avidity Maturation and Association with Disease MESHD Severity

    Authors: Yiqi Ruben Luo; Indrani Chakraborty; Cassandra Yun; Alan H.B. Wu; Kara Lake Lynch

    doi:10.1101/2020.07.30.20165522 Date: 2020-08-02 Source: medRxiv

    The kinetics of immunoglobulin G (IgG) avidity maturation during severe acute respiratory syndrome MESHD coronavirus 2 (SARS-CoV-2) infection MESHD was studied. The IgG avidity assay used a novel label-free immunoassay SERO technology to test IgG against the virus spike protein receptor-binding domain (RBD). The technology, thin-film interferometry (TFI), is able to sense the formation of immune complex on a sensing probe without attaching a reporter (enzyme, fluorophore, etc.). It was found that there was a strong correlation between IgG antibody SERO avidity and days since symptom onset TRANS (p < 0.0001). In addition, peak readings were significantly higher for specimens from ICU than non-ICU patients for the first month after symptom onset TRANS (1-4 weeks) and thereafter (p<0.0001). The findings are consistent for what has been reported for SARS-CoV. Given that SARS-CoV-2 specific IgG avidity is strong in ICU patients after 1 month, this suggests that antibody SERO-mediated immune enhancement triggered by suboptimal antibodies SERO may not play a role in COVID-19 disease progression MESHD and severity.

    Persistence of anti- SARS-CoV-2 antibodies SERO in non-hospitalized COVID-19 convalescent health care workers

    Authors: Margherita Bruni; Valentina Cecatiello; Angelica Diaz-Basabe; Georgia Lattanzi; Erika Mileti; Silvia Monzani; Laura Pirovano; Francesca Rizzelli; Clara Visintin; Giuseppina Bonizzi; Marco Giani; Marialuisa Lavitrano; Silvia Faravelli; Federico Forneris; Flavio Caprioli; Pier Giuseppe Pelicci; Gioacchino Natoli; Sebastiano Pasqualato; Marina Mapelli; Federica Facciotti

    doi:10.1101/2020.07.30.20164368 Date: 2020-08-01 Source: medRxiv

    Background. Coronavirus disease MESHD-19 (COVID-19) is a respiratory illness caused by the Severe Acute Respiratory Syndrome MESHD CoronaVirus 2 (SARS-CoV-2), a novel beta-coronavirus. Although antibody SERO response to SARS-CoV-2 can be detected early during the infection MESHD, several outstanding questions remain to be addressed regarding magnitude and persistence of antibody SERO titer against different viral proteins and their correlation with the strength of the immune response, as measured by serum SERO levels of pro-inflammatory mediators. Methods. An ELISA assay SERO has been developed by expressing and purifying the recombinant SARS-CoV-2 Spike Receptor Binding Domain (RBD), Soluble Ectodomain (Spike), and full length nucleocapsid protein (N protein). Sera from healthcare workers affected by non-severe COVID-19 were longitudinally collected over four weeks, and compared to sera from patients hospitalized in Intensive Care Units (ICU) and SARS-CoV-2-negative subjects for the presence of IgM, IgG and IgA antibodies SERO as well as soluble pro-inflammatory mediators in the sera. Results. Specificity and sensitivity SERO of the ELISA assays SERO were high for anti-RBD IgG and IgA (92-97%) and slightly lower for IgM and the Spike and N proteins (70-85%). The ELISA SERO allowed quantification of IgM, IgG and IgA antibody SERO responses against all the viral antigens tested and showed a correlation between magnitude of the antibody SERO response and disease MESHD severity. Non-hospitalized subjects showed lower antibody SERO titers and blood SERO pro-inflammatory cytokine profiles as compared to patients in Intensive Care Units (ICU), irrespective of the antibodies tested SERO. Noteworthy, in non-severe COVID-19 infections MESHD, antibody SERO titers against RBD and Spike, but not against the N protein, as well as pro-inflammatory cytokines decreased within a month after viral clearance. Conclusions. Rapid decline in antibody SERO titers and in pro-inflammatory cytokines may be a common feature of non-severe SARS-CoV-2 infection MESHD, suggesting that antibody SERO-mediated protection against re- infection MESHD with SARS-CoV-2 is of short duration. These results suggest caution in use serological testing SERO to estimate the prevalence SERO of SARS-CoV-2 infection MESHD in the general population.

The ZB MED preprint Viewer preVIEW includes all COVID-19 related preprints from medRxiv and bioRxiv, from ChemRxiv, from ResearchSquare, from arXiv and from Preprints.org and is updated on a daily basis (7am CET/CEST).

Sources


Annotations

All
None
MeSH Disease
Human Phenotype
Transmission
Seroprevalence


Export subcorpus as Endnote

This service is developed in the project nfdi4health task force covid-19 which is a part of nfdi4health.

nfdi4health is one of the funded consortia of the National Research Data Infrastructure programme of the DFG.