displaying 1 - 10 records in total 24
    records per page

    Identification of guanylyltransferase activity in the SARS-CoV-2 RNA polymerase

    Authors: Alexander P Walker; Haitian Fan; Jeremy R Keown; Jonathan Grimes; Ervin Fodor

    doi:10.1101/2021.03.17.435913 Date: 2021-03-18 Source: bioRxiv

    SARS-CoV-2 is a positive-sense RNA virus that is responsible for the ongoing Coronavirus Disease MESHD Coronavirus Disease 2019 MESHD ( COVID-19 MESHD) pandemic, which continues to cause significant morbidity, mortality and economic strain. SARS-CoV-2 can cause severe respiratory disease MESHD and death MESHD in humans, highlighting the need for effective antiviral therapies. The RNA synthesis machinery of SARS-CoV-2 is an ideal drug target and consists of non-structural protein 12 PROTEIN (nsp12), which is directly responsible for RNA synthesis, and numerous co-factors that are involved in RNA proofreading and 5' capping of viral mRNAs. The formation of the 5' cap-1 HGNC structure is known to require a guanylyltransferase (GTase) as well as 5' triphosphatase and methyltransferase activities. However, the mechanism of SARS-CoV-2 mRNA capping remains poorly understood. Here we show that the SARS-CoV-2 RNA polymerase nsp12 functions as a GTase. We characterise this GTase activity and find that the nsp12 NiRAN (nidovirus RdRP PROTEIN-associated nucleotidyltransferase) domain is responsible for carrying out the addition of a GTP nucleotide to the 5' end of viral RNA via a 5' to 5' triphosphate linkage. We also show that remdesivir triphosphate, the active form of the antiviral drug remdesivir, inhibits the SARS-CoV-2 GTase reaction as efficiently as RNA polymerase activity. These data improve understanding of coronavirus mRNA cap synthesis and highlight a new target for novel or repurposed antiviral drugs against SARS-CoV-2.

    How the replication and transcription complex of SARS-CoV-2 functions in leader-to-body fusion

    Authors: Xin Li; Qiang Zhao; Jia Chang; Guangyou Duan; Jinlong Bei; Tung On Yau; Jianyi Yang; Jishou Ruan; Bingjun He; Gao Shan

    doi:10.1101/2021.02.17.431652 Date: 2021-02-17 Source: bioRxiv

    Background: Coronavirus disease 2019 MESHD ( COVID-19 MESHD) is caused by severe acute respiratory syndrome coronavirus 2 MESHD (SARS-CoV-2). Although unprecedented efforts are underway to develop therapeutic strategies against this disease, scientists have acquired only a little knowledge regarding the structures and functions of the CoV replication and transcription complex (RTC) and 16 non-structural proteins, named NSP1 HGNC-16. Results: In the present study, we determined the theoretical arrangement of NSP12 PROTEIN-16 in the global RTC structure. This arrangement answered how the CoV RTC functions in the "leader-to-body fusion" process. More importantly, our results revealed the associations between multiple functions of the RTC, including RNA synthesis, NSP15 PROTEIN cleavage, RNA methylation, and CoV replication and transcription at the molecular level. As the most important finding, transcription regulatory sequence (TRS) hairpins were reported for the first time to help understand the multiple functions of CoV RTCs and the strong recombination abilities of CoVs. Conclusions: TRS hairpins can be used to identify recombination regions in CoV genomes. We provide a systematic understanding of the structures and functions of the RTC, leading to the eventual determination of the global CoV RTC structure. Our findings enrich fundamental knowledge in the field of gene expression and its regulation, providing a basis for future studies. Future drug design targeting SARS-CoV-2 needs to consider protein-protein and protein-RNA interactions in the RTC, particularly the complex structure of NSP15 PROTEIN and NSP16 PROTEIN with the TRS hairpin.

    Detection of the new SARS-CoV-2 variant B.1.526 with the Spike E484K mutation in South America

    Authors: Juan Fernández Cadena; Mindy Muñoz; Gabriel Morey León; Rubén Armas-González; Darlyn Amaya Márquez; Katheryn Sacheri Viteri; Paúl Cárdenas & USFQ-COVID Consortium; Fernando Valiente-Echeverría; Ricardo Soto Rifo; Derly Andrade Molina

    doi:10.21203/rs.3.rs-248965/v1 Date: 2021-02-17 Source: ResearchSquare

    Here, we report two sequences of the new SARS-CoV-2 variant recently detected and designed as B.1.526. This variant carries the immune escape-associated mutation E484K and additional mutations in the S, N, NSP2 PROTEIN NSP2 HGNC, NSP3 HGNC NSP3 PROTEIN, NSP4 PROTEIN NSP4 HGNC, NSP6 PROTEIN, NSP8 PROTEIN, NSP12 PROTEIN and NSP13 PROTEIN genes. Viral sequences were obtained from an individual traveling from the US to Equator with a negative RT-PCR and from one of his closest contacts that became infected. These cases should be considered an alert for the potential circulation of a new variant of concern with the E484K mutation in South America

    Identification of novel candidate CD8 HGNC+ T cell epitopes of the SARS-CoV2 with homology to other seasonal coronaviruses

    Authors: Pradeep Pushpakumara; Deshan Madusanka; Saubhagyagya Danasekara; Chandima Jeewandara; Graham Ogg; Gathsaurie Neelika Malavige

    doi:10.21203/rs.3.rs-228306/v1 Date: 2021-02-10 Source: ResearchSquare

    Background Individuals who have not been exposed to the SARS-CoV2 virus have been shown to have T cells that respond to the virus, possibly due to the presence of cross-reactive T cell responses to other seasonal human coronaviruses (HCoVs). Such cross-reactive T cell immunity may lead to immunopathology or protection.Results To understand the influence of such cross-reactive T cell responses, we used IEDB (Immune epitope database) and NetMHCpan (ver. 4.1) to identify candidate CD8 HGNC + T cell epitopes, restricted through HLA-A and B alleles, which are seen in a frequency of > 10% in the Sri Lankan population. Conservation analysis was carried out for these candidate epitopes with the HCoVs, OC43, HKU1, NL63 and with the current circulating different variants of SARS-CoV2. 12/18 the candidate CD8 HGNC + T cell epitopes (binding score of ≥ 0.90), which had a high degree of homology (> 75%) with the other three HCoVs were within the NSP12 PROTEIN and NSP13 PROTEIN proteins. They were predicted to be restricted through HLA-A HGNC*2402, HLA-A HGNC*201, HLA-A HGNC*206 and HLA-B HGNC alleles B*3501. 31 candidate CD8 HGNC + T cell epitopes that were specific to SARS-CoV2 virus (< 25% homology with other HCoVs) were predominantly identified within the structural proteins (spike PROTEIN, envelop, membrane and nucleocapsid) and the NSP1 HGNC, NSP2 PROTEIN NSP2 HGNC and NSP3 PROTEIN NSP3 HGNC. They were predominantly restricted through HLA-B HGNC*3501 (6/31), HLA-B HGNC*4001 (6/31), HLA-B HGNC*4403(7/31) and HLA-A HGNC*2402 (8/31). The candidate CD8 HGNC + T cell epitopes that were homologous or were specific, with a binding score of ≥ 0.90, were found to be highly conserved within the SARS-CoV2 variants identified so far.Conclusions It would be crucial to understand T cell responses that associate with protection and the differences in the functionality and phenotype of epitope specific T cell responses, presented through different HLA alleles common in different geographical groups in order to understand disease pathogenesis.

    Unravelling Vitamins as Wonder Molecules for Covid-19 MESHD Management via Structure-based Virtual Screening

    Authors: Medha Pandya; Sejal Shah; Dhanalakshmi Menamadathil; Ayushman Gadnayak; Tanzil Juneja; Amisha Patel; Kajari Das; Jayashankar Das

    doi:10.21203/rs.3.rs-144177/v1 Date: 2021-01-09 Source: ResearchSquare

    The emergence situation of coronavirus disease 2019 MESHD ( COVID-19 MESHD) pandemic has realised the global scientific communities to develop strategies for immediate priorities and long-term approaches for utilization of existing knowledge and resources which can be diverted to pandemic preparedness planning. Lack of proper vaccine candidate and therapeutic management has accelerated the researchers to repurpose the existing drugs with known preclinical and toxicity MESHD profiles, which can easily enter Phase 3 or 4 or can be used directly in clinical settings. We focused to justify even exploration of supplements, nutrients and vitamins to dampen the disease burden of the current pandemic may play a crucial role for its management. We have explored structure based virtual screening of 15 vitamins against non-structural ( NSP3 HGNC NSP3 PROTEIN, NSP5 PROTEIN NSP5 HGNC, ORF7a PROTEIN, NSP12 PROTEIN, ORF3a PROTEIN), structural (Spike & Hemagglutinin esterase) and host protein furin HGNC. The in silico analysis exhibited that vitamin B12, Vitamin B9, Vitamin D3 determined suitable binding while vitamin B15 manifested remarkable H-bond interactions with all targets. Vitamin B12 bestowed the lowest energies with human furin HGNC and SARS-COV-2 RNA dependent RNA polymerase PROTEIN. Furin HGNC mediated cleavage of the viral spike glycoprotein PROTEIN is directly related to enhanced virulence of SARS-CoV-2. In contrast to these, vitamin B12 showed zero affinity with SARS-CoV-2 spike PROTEIN protein. These upshots intimate that Vitamin B12 could be the wonder molecule to shrink the virulence by hindering the furin HGNC mediated entry of spike to host cell. These identified molecules may effectively assist in SARS-CoV-2 therapeutic management to boost the immunity by inhibiting the virus imparting relief in lung inflammation MESHD.

    One Year of SARS-CoV-2: How Much Has the Virus Changed?

    Authors: Santiago Vilar; Daniel G. Isom; Oksana Kharchenko; Krystina Naumenko; Svitlana Zagorodnya; Vasiliy Muraveinyk; Aleksandr Tarasevich; Anchal Chandra; Vijay Kumar Nuthakki; Theja Parassini Puthiyapurayil; Riyaz Ahmed; Ashaq Hussain Najar; Sai Manoz Lingamallu; Snigdhadev Das; Bhagyashri Mahajan; Praveen Kumar Vemula; Sandip B Bharate; Parvinder Pal Singh; Ram Vishwakarma; Arjun Guha; Varadharajan Sundaramurthy; Satyajit Mayor; Dirk Jochmans; Steven De Jonghe; Jasper Rymenants; Vincenzo Summa; Enzo Tramontano; Andrea Rosario Beccari; Pieter Leyssen; Paola Storici; Johan Neyts; Philip Gribbon; Andrea Zaliani

    doi:10.1101/2020.12.16.423071 Date: 2020-12-16 Source: bioRxiv

    SARS-CoV-2 coronavirus MESHD has caused a world-wide crisis with profound effects on both healthcare and the economy. In order to combat the COVID-19 pandemic MESHD, research groups have shared viral genome sequence data through the GISAID initiative. We collected and computationally profiled ~223,000 full SARS-CoV-2 proteome sequences from GISAID over one year for emergent nonsynonymous mutations. Our analysis shows that SARS-CoV-2 proteins are mutating at substantially different rates, with most viral proteins exhibiting little mutational variability. As anticipated, our calculations capture previously reported mutations occurred in the first period of the pandemic, such as D614G (Spike), P323L ( NSP12 PROTEIN), and R203K/G204R (Nucleocapsid), but also identify recent mutations like A222V and L18F (Spike) and A220V (Nucleocapsid). Our comprehensive temporal and geographical analyses show two periods with different mutations in the SARS-CoV-2 proteome: December 2019 to June 2020 and July to November 2020. Some mutation rates differ also by geography; the main mutations in the second period occurred in Europe. Furthermore, our structure-based molecular analysis provides an exhaustive assessment of mutations in the context of 3D protein structure. Emerging sequence-to-structure data is beginning to reveal the site-specific mutational tolerance of SARS-CoV2 proteins as the virus continues to spread around the globe.

    A COVID-19 MESHD Drug Repurposing Strategy Through Quantitative Homological Similarities by using a Topological Data Analysis Based Formalism

    Authors: Raul Pérez-Moraga; Jaume Forés-Martos; Beatriz Suay; Jean-Louis Duval; Antonio Falcó; Joan Climent

    id:10.20944/preprints202012.0281.v1 Date: 2020-12-11 Source: Preprints.org

    Since its emergence in March 2020, the SARS-CoV-2 global pandemic has produced more than 65 million cases and one point five million deaths worldwide. Despite the enormous efforts carried out by the scientific community, no effective treatments have been developed to date. We created a novel computational pipeline aimed to speed up the process of repurposable candidate drug identification. Compared with current drug repurposing methodologies, our strategy is centered on filtering the best candidate among all selected targets focused on the introduction of a mathematical formalism motivated by recent advances in the fields of algebraic topology and topological data analysis (TDA). This formalism allows us to compare three-dimensional protein structures. Its use in conjunction with two in silico validation strategies (molecular docking and transcriptomic analyses) allowed us to identify a set of potential drug repurposing candidates targeting three viral proteins (3CL viral protease, NSP15 PROTEIN endoribonuclease, and NSP12 PROTEIN RNA-dependent RNA polymerase PROTEIN), which included rutin, dexamethasone, and vemurafenib among others. To our knowledge, it is the first time that a TDA based strategy has been used to compare a massive amount of protein structures with the final objective of performing drug repurposing

    SARS-CoV-2 antibody signatures for predicting the outcome of COVID-19 MESHD

    Authors: Qing Lei; Caizheng Yu; Yang Li; Hongyan Hou; Zhaowei Xu; Meian He; Ziyong Sun; Feng Wang; Sheng-ce Tao; Xionglin Fan

    doi:10.1101/2020.11.10.20228890 Date: 2020-11-13 Source: medRxiv

    The COIVD-19 global pandemic is far from ending. There is an urgent need to identify applicable biomarkers for predicting the outcome of COVID-19 MESHD. Growing evidences have revealed that SARS-CoV-2 specific antibodies remain elevated with disease progression and severity in COIVD-19 patients. We assumed that antibodies may serve as biomarkers for predicting disease outcome. By taking advantage of a newly developed SARS-CoV-2 proteome microarray, we surveyed IgM/ IgG responses against 20 SARS-CoV-2 proteins in 1,034 hospitalized COVID-19 MESHD patients on admission, who were followed till 66 days. The microarray results were correlated with clinical information, laboratory test results and patient outcomes. Cox proportional hazards model was used to explore the association between SARS-CoV-2 specific antibodies and COVID-19 MESHD mortality. We found that high level of IgM against ORF7b PROTEIN at the time of hospitalization is an independent predictor of patient survival (p trend = 0.002), while levels of IgG responses to 6 non-structural proteins PROTEIN and 1 accessory protein, i. e PROTEIN., NSP4 HGNC NSP4 PROTEIN, NSP7 PROTEIN, NSP9 PROTEIN, NSP10 PROTEIN, RdRp PROTEIN ( NSP12 PROTEIN), NSP14 PROTEIN, and ORF3b PROTEIN, possess significant predictive power for patient death MESHD, even after further adjustments for demographics, comorbidities, and common laboratory markers for disease severity (all with p trend < 0.05). Spline regression analysis indicated that the correlation between ORF7b PROTEIN IgM, NSP9 PROTEIN IgG, and NSP10 PROTEIN IgG and risk of COVID-19 MESHD mortality is linear (p = 0.0013, 0.0073 and 0.0003, respectively). Their AUCs for predictions, determined by computational cross-validations (validation1), were 0.74 (cut-off = 7.59), 0.66 (cut-off = 9.13), and 0.68 (cut-off = 6.29), respectively. Further validations were conducted in the second and third serial samples of these cases (validation2A, n = 633, validation2B, n = 382), with high accuracy of prediction for outcome. These findings have important implications for improving clinical management, and especially for developing medical interventions and vaccines.

    Novel Development of Predictive Feature Fingerprints to Identify Chemistry-Based Features for Effective Drug Design of SARS-CoV-2 Target Antagonists and Inhibitors Using Machine Learning

    Authors: Kelvin Cooper; Christopher Baddeley; Bernie French; Katherine Gibson; James Golden; Thiam Lee; Sadrach Pierre; Brent Weiss; Jason Yang

    doi:10.26434/chemrxiv.13148111.v1 Date: 2020-10-29 Source: ChemRxiv

    A unique approach to bioactivity and chemical data curation coupled with Random forest analyses has led to a series of target-specific and cross-validated Predictive Feature Fingerprints (PFF) that have high predictability across multiple therapeutic targets and disease stages involved in the SARS-CoV-2 induced COVID-19 pandemic MESHD, which include plasma kallikrein, HIV protease, NSP5 PROTEIN NSP5 HGNC, NSP12 PROTEIN, JAK family and AT-1. The approach was highly accurate in determining the matched target for the different compound sets and suggests that the models could be used for virtual screening of target specific compound libraries. The curation-modeling process was successfully applied to a SARS-CoV-2 phenotypic screen and could be used for predictive bioactivity estimation and prioritization for clinical trial selection, virtual screening of drug libraries for repurposing of drug molecules, and analysis and direction of proprietary datasets.

    Analysis of SARS-CoV-2 genomes from across Africa reveals potentially clinically relevant mutations.

    Authors: Benson C. Iweriebor; Olivia S. Egbule; Samuel O Danso; Eugene Akujuru; Victor T Ibubeleye; Christabel I Oweredaba; Theodora Ogharanduku; Alexander Manu; Modeline Nicholas Longjohn; Chaofan Fan; Stefan Frischbutter; Katharina Habenicht; Lisa Budzinski; Justus Ninnemann; Peter K. Jani; Gabriela Guerra; Katrin Lehmann; Mareen Matz; Lennard Ostendorf; Lukas Heiberger; Hyun-Dong Chang; Sandy Bauherr; Marcus Maurer; Guenther Schoenrich; Martin Raftery; Tilmann Kallinich; Marcus Alexander Mall; Stefan Angermair; Sascha Treskatsch; Thomas Doerner; Victor M Corman; Andreas Diefenbach; Hans-Dieter Volk; Sefer Elezkurtaj; Thomas H. Winkler; Jun Dong; Anja Erika Hauser; Helena Radbruch; Mario Witkowski; Fritz Melchers; Andreas Radbruch; Mir-Farzin Mashreghi; Nehal M Shah; Hemang M Purohit; Cherry K Shah; Monila N Patel; Saket Shah; Smit H Shah; Tehsim Memon; Vishal R Beriwala; Kusum Jashnani; Fatema Ezzy; Simran Agrawal; Rakesh Bhadade; Atish M N; Tushar Madke; Vikash Kavishwar; Ramesh Waghmare; Nitin Valvi; B Thrilok Chander; A Vinaya Sekhar; Akhilesh Kumar Maurya; K Hemanth; K Nagamani; K Sudha; T Ravi Chandra; K Tushara Rao; J Vyshnavi; Rashmi Upadhyay; Shalini Bahadur; Rambha Pathak; Shikha Seth; Rakesh Gupta; Rita Saxena; Preksha Dwivedi; Reeni Malik; Deepti Chourasia; Jaya Lalwani; UM Sharma; JL Marko; Amit Suri; Vijay Kumar; Rajnish Kaushik; Parul Kodan; Bhabani Prasad Acharya; Kuldeep Kumar Gaur; Anubhav Gupta; Prerna Sachdeva; Shruti Dogra; Aikaj Jindal; M Joseph John; Avtar Singh Dhanju; Ranjana Khetrepal; Neeraj Sharma; Neetu Kukar; Divya Kavita; Rajesh Kumar; Rajesh Mahajan; Gurpreet Singh; Jaspreet Kaur; Raminder Pal Singh; Rajni Bassi; Swapneil Parikh; Om Shrivastav; Jayanthi Shastri; Maherra Desai; Shreevatsa Udupa; Varun A Bafna; Vijay Barge; Rajendra Madane; Sheetal Yadav; Sanjeev Mishra; Archana Bajpayee; M K Garg; G K Bohra; Vijaylakshmi Nag; Puneeth Babu Anne; Mohd Nadeem; Pallavi Singh; Ram Niwas; Niranjan Shiwaji Khaire; Rattiram Sharma; Mini p Singh; Naresh Sachdeva; Suchet Sachdev; Rekha Hans; Vikas Suri; L N Yaddanapudi; PVM Lakshmi; Neha Singh; Divendu Bhushan; Neeraj Kumar; Muralidhar Tambe; Sonali Salvi; Nalini Kadgi; Shashikala Sangle; Leena Nakate; Samir Joshi; Rajesh Karyakarte; Suraj Goyanka; Nimisha Sharma; Nikhil Verma; Asim Das; Monika Bahl; Nitya Wadhwa; Shreepad Bhat; Shweta Deshmukh; Vrushali Wagh; Atul Kulkarni; Tanvi Yardi; Ram S Kalgud; Purushottam Reddy; Kavitha Yevoor; Prashanth Gajula; Vivek Maleyur; Medini S; Mohith HN; Anil Gurtoo; Ritika Sud; Sangeeta Pahuja; Anupam Prakash; Parijat Gogoi; Shailja Shukla; D Himanshu Reddy; Tulika Chandra; Saurabh Pandey; Pradeep Maurya; Ali Wahid; Vivek Kumar; Kamlesh Upadhyay; Nidhi Bhatnagar; Nilima Shah; Mamta Shah; Tarak Patel; Ram Mohan Jaiswal; Ashish Jain; Shweta Sharma; Puneet Rijhwani; Naveen Gupta; Tinkal C Patel; Mahesh G Solu; Jitendra Patel; Yash R Shah; Mayur Jarag; Varsha Godbole; Meenakshi Shah; Rikin Raj; Irfan Nagori; Pramod R Jha; Arti D Shah; Gowtham Yeeli; Archit Jain; Rooppreet Kaur Gill; KV Sreedhar Babu; B Suresh Babu; Alladi Mohan; B Vengamma; K Chandra Sekhar; Srinivasulu Damam; K Narsimhulu; C Aparna; G Baleswari; Ravindranath Reddy K; P Chandrasekhar; Sunil Jodharam Panjwani; Pankaj J Akholkar; Kairavi Parthesh Joshi; Pragnesh H Shah; Manish Barvaliya; Milind Baldi; Ashok Yadav; Manoj Gupta; Nitin Rawat; Dilip Chawda; M Natarajan; M Sintha; David Pradeep Kumar; Fathhur Rabbani; Vrushali Khirid Khadke; Dattatray Patki; Sonali Marathe; Clyde D Souza; Vipul Tadha; Satyam Arora; Devendra Kumar Gupta; Seema Dua; Nitu Chauhan; Ajeet Singh Chahar; Joy John Mammen; Snehil Kumar; Dolly Daniel; Ravindraa Singh; Venkatesh Dhat; Yogesh Agarwal; Sohini Arora; Ashish Pathak; Manju Purohit; Ashish Sharma; Jayashree Sharma; Manisha Madkaikar; Kavita Joshi; Reetika Malik Yadav; Swarupa Bhagwat; Niteen D Karnik; Yojana A Gokhale; Leena Naik; Sangita Margam; Santasabuj Das; Alka Turuk; V Saravana Kumar; K Kanagasabai; R Sabarinathan; Gururaj Deshpande; Sharda Sharma; Rashmi Gunjikar; Anita Shete; Darpan Phagiwala; Chetan Patil; Snehal Shingade; Kajal Jarande; Himanshu Kaushal; Pragya Yadav; Gajanan Sapkal; Priya Abraham

    doi:10.1101/2020.09.08.287201 Date: 2020-09-08 Source: bioRxiv

    SARS-CoV-2 is a betacoronavirus, the etiologic agent of the novel Coronavirus disease 2019 MESHD ( COVID-19 MESHD). In December 2019, an outbreak of COVID-19 MESHD began in Wuhan province of the Hubei district in China and rapidly spread across the globe. On March 11th, 2020, the World Health Organization officially designated COVID-19 MESHD as a pandemic. Across the continents and specifically in Africa, all index cases were travel related. Thus, it is crucial to compare COVID-19 MESHD genome sequences from the African continent with sequences from COVID-19 MESHD hotspots (including China, Brazil, Italy, United State of America and the United Kingdom). To identify if there are distinguishing mutations in the African SARS-CoV-2 genomes compared to genomes from other countries, including disease hotspots, we conducted in silico analyses and comparisons. Complete African SARS-CoV-2 genomes deposited in GISAID and NCBI databases as of June 2020 were downloaded and aligned with genomes from Wuhan, China and other SARS-CoV-2 hotspots. Using phylogenetic analysis and amino acid sequence alignments of the spike and replicase ( NSP12 PROTEIN) proteins, we searched for possible targets for vaccine coverage or potential therapeutic agents. Our results showed a similarity between the African SARS-CoV-2 genomes and genomes in countries including China, Brazil, France, the United Kingdom, Italy, France and the United States of America. This study shows for the first time, an in-depth analysis of the SARS-CoV-2 landscape across Africa and will potentially provide insights into specific mutations to relevant proteins in the SARS-CoV-2 genomes in African populations.

The ZB MED preprint Viewer preVIEW includes all COVID-19 related preprints from medRxiv and bioRxiv, from ChemRxiv, from ResearchSquare, from arXiv and from Preprints.org and is updated on a daily basis (7am CET/CEST).
The web page can also be accessed via API.



MeSH Disease
HGNC Genes
SARS-CoV-2 Proteins

Export subcorpus as...

This service is developed in the project nfdi4health task force covid-19 which is a part of nfdi4health.

nfdi4health is one of the funded consortia of the National Research Data Infrastructure programme of the DFG.