Corpus overview


Overview

MeSH Disease

HGNC Genes

There are no HGNC terms in the subcorpus


SARS-CoV-2 proteins

There are no SARS-CoV-2 protein terms in the subcorpus


Filter

Genes
Diseases
SARS-CoV-2 Proteins
    displaying 1 - 1 records in total 1
    records per page




    Novel Machine-Learned Approach for COVID-19 MESHD Resource Allocation: A Tool for EvaluatingCommunity Susceptibility

    Authors: Neil Kale

    doi:10.1101/2020.10.14.20212571 Date: 2020-10-16 Source: medRxiv

    Despite worldwide efforts to develop an effective COVID vaccine, it is quite evident that initial supplies will be limited. Therefore, it is important to develop methods that will ensure that the COVID vaccine is allocated to the people who are at major risk until there is a sufficient global supply. Herein, I developed a machine-learning tool that could be applied to assess the risk in communities based on social, medical, and lifestyle risk factors. As a proof of concept, I modeled COVID risk in the Massachusetts communities using 29 risk factors, including the prevalence of preexisting comorbid conditions like COPD MESHD and social factors such as racial composition. Of the 29 factors, 14 were found to be significant (p < 0.1) indicators: poverty, food insecurity, lack of high school education, lack of health insurance coverage, premature mortality, population, population density, recent population growth, Asian percentage, high-occupancy housing, and preexisting prevalence of cancer MESHD, COPD MESHD, overweightness MESHD, and heart attacks. The machine-learning approach finds the 9 highest risk communities in the state of Massachusetts: Lynn, Brockton, Revere, Randolph, Lowell, New Bedford, Everett, Waltham, and Fitchburg. The 5 most at-risk counties are Suffolk, Middlesex, Bristol, Norfolk, and Plymouth. With appropriate data, the tool could evaluate risk in other communities, or even enumerate individual patient susceptibility. A ranking of communities by risk may help policymakers ensure equitable allocation of limited doses of the COVID vaccine.

The ZB MED preprint Viewer preVIEW includes all COVID-19 related preprints from medRxiv and bioRxiv, from ChemRxiv, from ResearchSquare, from arXiv and from Preprints.org and is updated on a daily basis (7am CET/CEST).
The web page can also be accessed via API.

Sources


Annotations

All
None
MeSH Disease
HGNC Genes
SARS-CoV-2 Proteins


Export subcorpus as...

This service is developed in the project nfdi4health task force covid-19 which is a part of nfdi4health.

nfdi4health is one of the funded consortia of the National Research Data Infrastructure programme of the DFG.