Corpus overview


Overview

MeSH Disease

HGNC Genes

SARS-CoV-2 proteins

ProteinS (2072)

ProteinN (185)

NSP5 (63)

ProteinS1 (55)

ComplexRdRp (52)


Filter

Genes
Diseases
SARS-CoV-2 Proteins
    displaying 31 - 40 records in total 2072
    records per page




    Driving potent neutralization of a SARS-CoV-2 Variant of Concern with a heterotypic boost

    Authors: Daniel J Sheward; Marco Mandolesi; Changil Kim; Leo Hanke; Laura Perez Vidakovics; Gerald M McInerney; Gunilla Karlsson Hedestam; Ben Murrell

    doi:10.1101/2021.04.03.438330 Date: 2021-04-05 Source: bioRxiv

    The emergence of SARS-CoV-2 Variants of Concern (VOCs) with mutations in key neutralizing antibody epitopes threatens to undermine vaccines developed against the pandemic founder variant (Wu-Hu-1). Widespread vaccine rollout and continued transmission are creating a population that has antibody responses of varying potency to Wu-Hu-1. Against this background, it is critical to assess the outcomes of subsequent booster vaccination with variant antigens. It is not yet known whether such heterotypic vaccine boosts would be compromised by original antigenic sin, where pre-existing responses to a prior variant dampen responses to a new one, or whether the primed memory B cell repertoire would bridge the gap between Wu-Hu-1 and VOCs. Here, we show that a single adjuvanted dose of receptor binding domain (RBD) protein from VOC 501Y.V2 (B.1.351) drives an extremely potent neutralizing antibody response capable of cross-neutralizing both Wu-Hu-1 and 501Y.V2 in rhesus macaques previously immunized with Wu-Hu-1 spike protein PROTEIN.

    An emerging SARS-CoV-2 mutant evading cellular immunity and increasing viral infectivity

    Authors: Chihiro Motozono; Mako Toyoda; Jiri Zahradnik; Terumasa Ikeda; Akatsuki Saito; Toong Seng Tan; Isaac Ngare; Hesham Nasser; Izumi Kimura; Keiya Uriu; Yusuke Kosugi; Shiho Torii; Akiko Yonekawa; Nobuyuki Shimono; Yoji Nagasaki; Rumi Minami; Takashi Toya; Noritaka Sekiya; Takasuke Fukuhara; Yoshiharu Matsuura; Gideon Schreiber; - The Genotype to Phenotype Japan (G2P-Japan) consortium; So Nakagawa; Takamasa Ueno; Kei Sato

    doi:10.1101/2021.04.02.438288 Date: 2021-04-05 Source: bioRxiv

    During the current SARS-CoV-2 pandemic that is devastating the modern societies worldwide, many variants that naturally acquire multiple mutations have emerged. Emerging mutations can affect viral properties such as infectivity and immune resistance. Although the sensitivity of naturally occurring SARS-CoV-2 variants to humoral immunity has recently been investigated, that to human leukocyte antigen (HLA)-restricted cellular immunity remains unaddressed. Here we demonstrate that two recently emerging mutants in the receptor binding domain of the SARS-CoV-2 spike PROTEIN protein, L452R (in B.1.427/429) and Y453F (in B.1.298), can escape from the HLA-24-restricted cellular immunity. These mutations reinforce the affinity to viral receptor ACE2 HGNC, and notably, the L452R mutation increases protein stability, viral infectivity, and potentially promotes viral replication. Our data suggest that the HLA-restricted cellular immunity potentially affects the evolution of viral phenotypes, and the escape from cellular immunity can be a further threat of the SARS-CoV-2 pandemic.

    Bioinformatics analysis of SARS-CoV-2 RBD mutant variants and insights into antibody and ACE2 HGNC receptor binding

    Authors: Prashant Ranjan; Neha; Chandra Devi; Parimal Das

    doi:10.1101/2021.04.03.438113 Date: 2021-04-04 Source: bioRxiv

    Prevailing COVID-19 MESHD vaccines are based on the spike protein PROTEIN of earlier SARS-CoV-2 strain that emerged in Wuhan, China. Continuously evolving nature of SARS-CoV-2 resulting emergence of new variant/s raise the risk of immune absconds. Several RBD (receptor-binding domain) variants have been reported to affect the vaccine efficacy considerably. In the present study, we performed in silico structural analysis of spike protein PROTEIN of double mutant (L452R & E484Q), a new variant of SARS-CoV-2 recently reported in India along with K417G variants and earlier reported RBD variants and found structural changes in RBD region after comparing with the wild type. Comparison of the binding affinity of the double mutant and earlier reported RBD variant for ACE2 HGNC (angiotensin 2 altered enzymes) receptor and CR3022 antibody with the wild-type strain revealed the lowest binding affinity of the double mutant for CR3022 among all other variants. These findings suggest that the newly emerged double mutant could significantly reduce the impact of the current vaccine which threatens the protective efficacy of current vaccine therapy.

    Comprehensive assessment of humoral response after Pfizer BNT162b2 mRNA Covid-19 MESHD vaccination: a three-case series

    Authors: Elisa Danese; Martina Montagnana; Gian Luca Salvagno; Matteo Gelati; Denise Peserico; Laura Pighi; Simone De Nitto; Brandon Michael Henry; Stefano Porru; Giuseppe Lippi

    doi:10.1101/2021.03.19.21253989 Date: 2021-04-04 Source: medRxiv

    Background. Since universal vaccination is a pillar against coronavirus disease 2019 MESHD ( COVID-19 MESHD), monitoring anti-SARS-CoV-2 neutralizing antibodies is essential for deciphering post-vaccination immune response. Methods. Three healthcare workers received 30 g BNT162b2 mRNA Covid-19 MESHD Vaccine, followed by a second identical dose, 21 days afterwards. Venous blood MESHD was drawn at baseline and at serial intervals, up to 63 days afterwards, for assessing total immunoglobulins (Ig) anti-RBD (receptor binding domain), IgG anti-S1/S2, IgG anti-RBD, IgM anti-RBD, IgM anti-N/S1 and IgA anti-S1. Results. All subjects were SARS-CoV-2 seronegative at baseline. Total Ig anti-RBD, IgG anti-S1/S2 and IgG anti-RBD levels increased between 91-368 folds until 21 days after the first vaccine dose, then reached a plateau. The levels raised further after the second dose (by ~30-, ~8- and ~8-fold, respectively), peaking at day 35, but then slightly declining and stabilizing ~50 days after the first dose. IgA anti-S1 levels increased between 7-11 days after the first dose, slightly declined before the second dose, after which levels augmented by ~24-fold from baseline. The anti-RBD and anti-N/S1 IgM kinetics were similar to that of anti-S1 IgA, though displaying substantially weaker increases and modest peaks, only 4 to 7-fold higher than baseline. Highly significant inter-correlation was noted between total Ig anti-RBD, anti-S1/S2 and anti-RBD IgG (all r=0.99), whilst other anti-SARS-CoV-2 antibodies displayed lower, though still significant, correlations. Serum spike protein PROTEIN concentration was undetectable at all time points. Conclusions. BNT162b2 mRNA vaccination generates a robust humoral immune response, especially involving IgG and IgA, magnified by the second vaccine dose.

    Sex differences in lung imaging and SARS-CoV-2 antibody responses in a COVID-19 MESHD golden Syrian hamster model

    Authors: Santosh Dhakal; Camilo A. Ruiz-Bedoya; Ruifeng Zhou; Patrick Creisher; Jason Villano; Kirsten Littlefield; Jennie Castillo; Paula Marinho; Anne Jedlicka; Alvaro Ordonez; Natalia Majewska; Michael Betenbaugh; Kelly Flavahan; Alice Mueller; Monika Looney; Darla Quijada; Filipa Mota; Sarah E. Beck; Jacqueline K Brockhurst; Alicia Braxton; Natalie Castell; Kelly A. Metcalf Pate; Petros C. Karakousis; Joseph L. Mankowski; Andrew Pekosz; Sanjay K Jain; Sabra L. Klein

    doi:10.1101/2021.04.02.438292 Date: 2021-04-04 Source: bioRxiv

    In the ongoing coronavirus disease MESHD coronavirus disease 2019 MESHD ( COVID-19 MESHD) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) MESHD, more severe outcomes are reported in males compared with females, including hospitalizations and deaths. Animal models can provide an opportunity to mechanistically interrogate causes of sex differences in the pathogenesis of SARS-CoV-2. Adult male and female golden Syrian hamsters (8-10 weeks of age) were inoculated intranasally with 105 TCID50 of SARS-CoV-2/USA-WA1/2020 and euthanized at several time points during the acute (i.e., virus actively replicating) and recovery (i.e., after the infectious virus has been cleared) phases of infection. There was no mortality, but infected male hamsters experienced greater morbidity, losing a greater percentage of body mass, developing more extensive pneumonia MESHD as noted on chest computed tomography, and recovering more slowly than females. Treatment of male hamsters with estradiol did not alter pulmonary damage MESHD. Virus titers in respiratory tissues, including nasal turbinates, trachea, and lungs, and pulmonary cytokine concentrations, including IFNb and TNFa, were comparable between the sexes. However, during the recovery phase of infection, females mounted two-fold greater IgM, IgG, and IgA responses against the receptor-binding domain of the spike protein (S PROTEIN-RBD) in both plasma and respiratory tissues. Female hamsters also had significantly greater IgG antibodies against whole inactivated SARS-CoV-2 and mutant S-RBDs MESHD, as well as virus neutralizing antibodies in plasma. The development of an animal model to study COVID-19 MESHD sex differences will allow for a greater mechanistic understanding of the SARS-CoV-2 associated sex differences seen in the human population.

    Discovery and in-vitro evaluation of potent SARS-CoV-2 entry inhibitors

    Authors: Arpan Acharya; Kabita Pandey; Michellie Thurman; Elizabeth Klug; Jay Trivedi; Christian L Lorson; Kamlendra Singh; Siddappa N Byrareddy

    doi:10.1101/2021.04.02.438204 Date: 2021-04-02 Source: bioRxiv

    SARS-CoV-2 infection MESHD initiates with the attachment of spike protein PROTEIN to the ACE2 HGNC receptor. While vaccines have been developed, no SARS-CoV-2 specific small molecule inhibitors have been approved. Herein, utilizing the crystal structure of the ACE2 HGNC/Spike receptor binding domain (S-RBD) complex in computer-aided drug design (CADD) approach, we docked ~8 million compounds within the pockets residing at S-RBD/ ACE2 HGNC interface. Five best hits depending on the docking score, were selected and tested for their in vitro efficacy to block SARS-CoV-2 replication. Of these, two compounds (MU-UNMC-1 and MU-UNMC-2) blocked SARS-CoV-2 replication at sub-micromolar IC50 in human bronchial epithelial cells (UNCN1T) and Vero cells. Furthermore, MU-UNMC-2 was highly potent in blocking the virus entry by using pseudoviral particles expressing SARS-CoV-2 spike PROTEIN. Finally, we found that MU-UNMC-2 is highly synergistic with remdesivir (RDV), suggesting that minimal amounts are needed when used in combination with RDV, and has the potential to develop as a potential entry inhibitor for COVID-19 MESHD.

    Qualitatively distinct modes of Sputnik V vaccine-neutralization escape by SARS-CoV-2 Spike PROTEIN variants

    Authors: Satoshi Ikegame; Mohammed N. A. Siddiquey; Chuan-Tien Hung; Griffin Haas; Luca Brambilla; Kasopefoluwa Y. Oguntuyo; Shreyas Kowdle; Ariel Esteban Vilardo; Alexis Edelstein; Claudia Perandones; Jeremy P. Kamil; Benhur Lee

    doi:10.1101/2021.03.31.21254660 Date: 2021-04-02 Source: medRxiv

    The novel pandemic betacoronavirus, severe acute respiratory syndrome coronavirus 2 MESHD (SARS-CoV-2), has infected at least 120 million people since its identification as the cause of a December 2019 viral pneumonia MESHD outbreak in Wuhan, China. Despite the unprecedented pace of vaccine development, with six vaccines already in use worldwide, the emergence of SARS-CoV-2 variants of concern (VOC) across diverse geographic locales suggests herd immunity may fail to eliminate the virus. All three officially designated VOC carry Spike (S) polymorphisms thought to enable escape from neutralizing antibodies elicited during initial waves of the pandemic. Here, we characterize the biological consequences of the ensemble of S mutations present in VOC lineages B.1.1.7 (501Y.V1) and B.1.351 (501Y.V2). Using a replication-competent EGFP-reporter vesicular stomatitis virus MESHD ( VSV MESHD) system, rcVSV-CoV2-S, which encodes S from SARS coronavirus 2 in place of VSV MESHD-G, coupled with a clonal HEK-293T ACE2 HGNC TMPRSS2 cell line optimized for highly efficient S-mediated infection, we determined that 8 out of 12 (75%) of serum samples from 12 recipients of the Russian Sputnik V Ad26 / Ad5 vaccine showed dose response curve slopes indicative of failure to neutralize rcVSV-CoV2-S: B.1.351. The same set of sera efficiently neutralized S from B.1.1.7 and showed only moderately reduced activity against S carrying the E484K substitution alone. Taken together, our data suggest that control of emergent SARS-CoV-2 variants may benefit from updated vaccines.

    One dose of COVID-19 MESHD nanoparticle vaccine REVC-128 provides protection against SARS-CoV-2 challenge at two weeks post immunization

    Authors: Maggie Gu; Jonathan L Torres; Jack Greenhouse; Shannon Wallace; Chi-I Chiang; Abigail M Jackson; Maciel Porto; Swagata Kar; Yuxing Li; Andrew B Ward; Yimeng Wang

    doi:10.1101/2021.04.02.438218 Date: 2021-04-02 Source: bioRxiv

    A COVID-19 MESHD vaccine with capability to induce early protection is needed to efficiently eliminate viral spread. Here, we demonstrate the development of a nanoparticle vaccine candidate, REVC-128, in which multiple trimeric spike ectodomain subunits with glycine (G) at position 614 were multimerized onto a nanoparticle. In-vitro characterization of this vaccine confirms its structural and antigenic integrity. In-vivo immunogenicity evaluation in mice indicates that a single dose of this vaccine induces potent serum neutralizing antibody titer at two weeks post immunization, which is significantly higher than titer induced by trimeric spike protein PROTEIN without nanoparticle presentation. The comparison of serum binding to spike subunits between animals immunized by spike with and without nanoparticle presentation indicates that nanoparticle prefers the display of spike RBD (Receptor-Binding Domain) over S2 subunit, likely resulting in a more neutralizing but less cross-reactive antibody response. Moreover, a Syrian golden hamster in-vivo model for SARS-CoV-2 virus challenge was implemented at two weeks post a single dose of REVC-128 immunization. The results show that vaccination protects hamsters against SARS-CoV-2 virus challenge with evidence of steady body weight, suppressed viral loads and alleviation of tissue damage (lung and nares) for protected animals, compared with ~10% weight loss MESHD, higher viral loads and tissue damage in unprotected animals. Furthermore, the data show that vaccine REVC-128 is thermostable at up to 37 degree for at least 4 weeks. These findings, along with a long history of safety for protein vaccines, suggest that the REVC-128 is a safe, stable and efficacious single-shot vaccine candidate to induce the earliest protection against SARS-CoV-2 infection MESHD.

    Analysis of glycosylation and disulfide bonding of wild-type SARS-CoV-2 spike PROTEIN glycoprotein

    Authors: Shijian Zhang; Eden P. Go; Haitao Ding; Saumya Anang; John C. Kappes; Heather Desaire; Joseph G. Sodroski

    doi:10.1101/2021.04.01.438120 Date: 2021-04-01 Source: bioRxiv

    The SARS-CoV-2 coronavirus, the etiologic agent of COVID-19 MESHD, uses its spike ( S) glycoprotein PROTEIN anchored in the viral membrane to enter host cells. The S glycoprotein PROTEIN is the major target for neutralizing antibodies elicited by natural infection and by vaccines. Approximately 35% of the SARS-CoV-2 S glycoprotein PROTEIN consists of carbohydrate, which can influence virus infectivity and susceptibility to antibody inhibition. We found that virus-like particles produced by coexpression of SARS-CoV-2 S MESHD, M, E and N proteins PROTEIN contained spike glycoproteins PROTEIN that were extensively modified by complex carbohydrates. We used a fucose-selective lectin to enrich the Golgi-resident fraction of a wild-type SARS-CoV-2 S glycoprotein PROTEIN trimer, and determined its glycosylation and disulfide bond profile. Compared with soluble or solubilized S glycoproteins PROTEIN modified to prevent proteolytic cleavage and to retain a prefusion conformation, more of the wild-type S glycoprotein PROTEIN N-linked glycans are processed to complex forms. Even Asn 234, a significant percentage of which is decorated by high-mannose glycans on soluble and virion S trimers, is predominantly modified in the Golgi by processed glycans. Three incompletely occupied sites of O-linked glycosylation were detected. Viruses pseudotyped with natural variants of the serine/threonine residues implicated in O-linked glycosylation were generally infectious and exhibited sensitivity to neutralization by soluble ACE2 HGNC and convalescent antisera comparable to that of the wild-type virus. Unlike other natural cysteine variants, a Cys15Phe (C15F) mutant retained partial, but unstable, infectivity. These findings enhance our understanding of the Golgi processing of the native SARS-CoV-2 S glycoprotein PROTEIN carbohydrates and could assist the design of interventions.

    Coagulation factors directly cleave SARS-CoV-2 spike PROTEIN and enhance viral entry MESHD

    Authors: Edward R Kastenhuber; Javier A. Jaimes; Jared L. Johnson; Marisa Mercadante; Frauke Muecksch; Yiska Weisblum; Yaron Bram; Robert E. Schwartz; Gary R. Whittaker; Lewis C. Cantley

    doi:10.1101/2021.03.31.437960 Date: 2021-04-01 Source: bioRxiv

    Coagulopathy is recognized as a significant aspect of morbidity in COVID-19 MESHD patients. The clotting cascade is propagated by a series of proteases, including factor Xa HGNC and thrombin HGNC. Other host proteases, including TMPRSS2 HGNC, are recognized to be important for cleavage activation of SARS-CoV-2 spike PROTEIN to promote viral entry. Using biochemical and cell-based assays, we demonstrate that factor Xa HGNC and thrombin HGNC can also directly cleave SARS-CoV-2 spike PROTEIN, enhancing viral entry. A drug-repurposing screen identified a subset of protease inhibitors that promiscuously inhibited spike cleavage by both transmembrane serine proteases as well as coagulation factors. The mechanism of the protease inhibitors nafamostat and camostat extend beyond inhibition of TMPRSS2 HGNC to coagulation-induced spike cleavage. Anticoagulation is critical in the management of COVID-19 MESHD, and early intervention could provide collateral benefit by suppressing SARS-CoV-2 viral entry. We propose a model of positive feedback whereby infection-induced hypercoagulation MESHD exacerbates SARS-CoV-2 infectivity MESHD.

The ZB MED preprint Viewer preVIEW includes all COVID-19 related preprints from medRxiv and bioRxiv, from ChemRxiv, from ResearchSquare, from arXiv and from Preprints.org and is updated on a daily basis (7am CET/CEST).
The web page can also be accessed via API.

Sources


Annotations

All
None
MeSH Disease
HGNC Genes
SARS-CoV-2 Proteins


Export subcorpus as...

This service is developed in the project nfdi4health task force covid-19 which is a part of nfdi4health.

nfdi4health is one of the funded consortia of the National Research Data Infrastructure programme of the DFG.