Corpus overview


MeSH Disease

Human Phenotype

There are no HP terms in the subcorpus


There are no transmission terms in the subcorpus


There are no seroprevalence terms in the subcorpus

    displaying 1 - 2 records in total 2
    records per page

    The serotonin reuptake inhibitor Fluoxetine inhibits SARS-CoV-2

    Authors: Melissa Zimniak; Luisa Kirschner; Helen Hilpert; Juergen Seibel; Jochen Bodem

    doi:10.1101/2020.06.14.150490 Date: 2020-06-14 Source: bioRxiv

    To circumvent time-consuming clinical trials, testing whether existing drugs are effective inhibitors of SARS-CoV-2, has led to the discovery of Remdesivir. We decided to follow this path and screened approved medications "off-label" against SARS-CoV-2. In these screenings, Fluoxetine inhibited SARS-CoV-2 at a concentration of 0.8{micro}g/ml significantly, and the EC50 was determined with 387ng/ml. Fluoxetine is a racemate consisting of both stereoisomers, while the S-form is the dominant serotonin reuptake inhibitor. We found that both isomers show similar activity on the virus. Fluoxetine treatment resulted in a decrease in viral protein expression. Furthermore, Fluoxetine inhibited neither Rabies MESHD virus, human respiratory syncytial virus replication nor the Human Herpesvirus 8 or Herpes simplex MESHD virus type 1 gene expression, indicating that it acts virus-specific. We see the role of Fluoxetine in the early treatment of SARS-CoV-2 infected patients of risk groups.

    Identification and enrichment of SECReTE cis-acting RNA elements in the Coronaviridae and other (+) single-strand RNA viruses

    Authors: Gal Haimovich; Tsviya Olender; Camila Baez; Jeffrey E Gerst

    doi:10.1101/2020.04.20.050088 Date: 2020-04-20 Source: bioRxiv

    cis-acting RNA motifs play a major role in regulating many aspects of RNA biology including posttranscriptional processing, nuclear export, RNA localization, translation and degradation. Here we analyzed the genomes of SARS-CoV-2 and other single-strand RNA (ssRNA) viruses for the presence of a unique cis RNA element called SECReTE. This motif consists of 10 or more consecutive triplet nucleotide repeats where a pyrimidine nucleotide (C or U) in present every third base, and which we identified in mRNAs encoding secreted proteins in bacteria, yeast, and humans. This motif facilitates mRNA localization to the endoplasmic reticulum (ER), along with the enhanced translation and secretion of translated protein. We now examined for SECReTE presence in Group IV and V RNA viruses, the former including the Coronaviridae, like SARS-CoV-2 and other positive (+)ssRNA viruses, and the latter consisting of negative (-) ssRNA viruses. Interestingly, the SARS-CoV-2 genome contains 40 SECReTE motifs at an abundance of ~1.3 SECReTEs/kilobase (kb). Moreover, all ssRNA viruses we examined contain multiple copies of this motif and appears in (+)ssRNA viruses as non-random in occurrence and independent of genome length. Importantly, (+)ssRNA viruses (e.g. Coronaviruses and Hepaciviruses), which utilize ER membranes to create double membrane vesicles to serve as viral replication centers (VRCs), contain more SECReTE motifs per kb as compared to (-)ssRNA viruses (e.g. Rabies MESHD, Mumps MESHD, and Influenza), that replicate in the nucleus or the cytoplasm, or other (+)ssRNA viruses (e.g. Enteroviruses and Flaviviruses) which employ different organellar membranes. As predicted by our earlier work, SECReTE sequences are mostly found in membranal or ER-associated/secreted proteins. Thus, we propose that SECReTE motifs could be important for the efficient translation and secretion of secreted viral proteins, as well as for VRC formation. Future studies of SECReTE function and identification of SECReTE-binding proteins could provide new drug targets to treat COVID-19 and other (+)ssRNA related diseases MESHD.

The ZB MED preprint Viewer preVIEW includes all COVID-19 related preprints from medRxiv and bioRxiv, from ChemRxiv, from ResearchSquare, from arXiv and from and is updated on a daily basis (7am CET/CEST).



MeSH Disease
Human Phenotype

Export subcorpus as Endnote

This service is developed in the project nfdi4health task force covid-19 which is a part of nfdi4health.

nfdi4health is one of the funded consortia of the National Research Data Infrastructure programme of the DFG.